算法设计与分析习题答案1-6章

更新时间:2023-12-09 02:23:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

习题1

1.

图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(Leonhard Euler,1707—1783)提出并解决了该问题。七桥问题是这样描述的:北区 一个人是否能在一次步行中穿越哥尼斯堡(现

东区 在叫加里宁格勒,在波罗的海南岸)城中全部岛区 的七座桥后回到起点,且每座桥只经过一次,

南区 图1.7是这条河以及河上的两个岛和七座桥的

图1.7 七桥问题

草图。请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点 1, 一次步行

2, 经过七座桥,且每次只经历过一次 3, 回到起点

该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。请用伪代码描述这个版本的欧几里德算法 1.r=m-n

2.循环直到r=0 2.1 m=n 2.2 n=r 2.3 r=m-n 3 输出m

3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代码和C++描述。

//采用分治法

//对数组先进行快速排序 //在依次比较相邻的差 #include using namespace std;

int partions(int b[],int low,int high) {

int prvotkey=b[low]; b[0]=b[low]; while (low

while (low=prvotkey) --high;

b[low]=b[high];

while (low

b[high]=b[low]; }

b[low]=b[0]; return low; }

void qsort(int l[],int low,int high) {

int prvotloc; if(low

prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序 由low 到prvotloc-1 qsort(l,prvotloc+1,high); //递归调用排序 由 prvotloc+1到 high } }

void quicksort(int l[],int n) {

qsort(l,1,n); //第一个作为枢轴 ,从第一个排到第n个 }

int main() {

int a[11]={0,2,32,43,23,45,36,57,14,27,39}; int value=0;//将最小差的值赋值给value for (int b=1;b<11;b++) cout<

quicksort(a,11);

for(int i=0;i!=9;++i)

{

if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) ) value=a[i+1]-a[i]; else

value=a[i+2]-a[i+1]; }

cout<

return 0; }

4. 设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。要求分别给出伪代码和C++描述。

#include using namespace std;

int main() { int a[]={1,2,3,6,4,9,0};

int mid_value=0;//将“既不是最大也不是最小的元素”的值赋值给它 for(int i=0;i!=4;++i) { if(a[i+1]>a[i]&&a[i+1]a[i+2]) { mid_value=a[i+1]; cout<

5. 编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。

#include using namespace std;

int main() {

double value=0;

for(int n=1;n<=10000 ;++n) { value=value*10+1; if(value 13==0) { cout<<\至少为:\ break; } }//for

return 0; }

6. 计算π值的问题能精确求解吗?编写程序,求解满足给定精度要求的π值

#include using namespace std;

int main () {

double a,b;

double arctan(double x);//声明 a = 16.0*arctan(1/5.0); b = 4.0*arctan(1/239);

cout << \

return 0; }

double arctan(double x) {

int i=0;

double r=0,e,f,sqr;//定义四个变量初 sqr = x*x; e = x;

while (e/i>1e-15)//定义精度范围 {

f = e/i;//f是每次r需要叠加的方程

r = (i%4==1)?r+f:r-f;

e = e*sqr;//e每次乘于x的平方 i+=2;//i每次加2 }//while return r; }

7. 圣经上说:神6天创造天地万有,第7日安歇。为什么是6天呢?任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。例如,6=1+2+3,因此6是完美数。神6天创造世界,暗示着该创造是完美的。设计算法,判断给定的自然数是否是完美数

#include using namespace std;

int main() {

int value, k=1; cin>>value;

for (int i = 2;i!=value;++i) {

while (value % i == 0 ) {

k+=i;//k为该自然数所有因子之和 value = value/ i; }

}//for

if(k==value)

cout<<\该自然数是完美数\ else

cout<<\该自然数不是完美数\ return 0; }

8. 有4个人打算过桥,这个桥每次最多只能有两个人同时通过。他们都在桥的某一端,并且是在晚上,过桥需要一只手电筒,而他们只有一只手电筒。这就意味着两个人过桥后必须有一个人将手电筒带回来。每个人走路的速度是不同的:甲过桥要用1分钟,乙过桥要用2分钟,丙过桥要用5分钟,丁过桥要用10分钟,显然,两个人走路的速度等于其中较慢那个人的速度,问题是他们全部过桥最少要用多长时间?

本文来源:https://www.bwwdw.com/article/19y5.html

Top