Mathematica学习之路
更新时间:2024-07-06 06:23:01 阅读量: 综合文库 文档下载
Mathematica入门教程
二.“表”及其用法
“表”是Mathematica中一个相当有用的数据类型,它即可以作为数组,又可以作为矩阵;除此以外,你可以把任意一组表达式用一个或一组{}括起来,进行运算、存储。可以说表是任意对象的一个集合。它可以动态地分配内存,可以方便地进行插入、删除、排序、翻转等等几乎所有可以想象到的操作。 如果你建立了一个表,你可以通过下表操作符[[]](双方括号)来访问它的每一个元素,如我们定义table={2,Pi,Sin[x],{aaa,A*I}}为一个表,那么table[[1]]就为2,table[[2]]就是Pi,而table[[3,1]]表示嵌套在table中的子表{aaa,A*I}的第一个元素即aaa,table[[3,2]]表示{aaa,A*I}第二个元素即A*I。总之,表每一层次上并列的部分用逗号分割,表可以无穷嵌套。
你可以通过Append[表,表达式]或Prepend[表,表达式]把表达式添加到表的最前面或最后面,如Append[{1,2,3},a]表示{1,2,3,a}。你还可以通过Union[表1,表2,......],Jion[表1,表2,......]来把几个表合并为一个表,二者不同在于Union在合并时删除了各表中重复的元素,而后者仅是简单的合并;你还可以使用Flatten[表]把表中所有子表\抹平\合并成一个表,而Patition[表,整数n]把表按每n个元素分段作为子表,集合成的表。如Flatten[{1,2,{Sin[x],dog},{{y}}}]表示{1,2,Sin[x],y},而Partition[{1,2,Sin[x],y},2]把表每两个分段,结果为{{1,2},{Sin[x],y}};还可以通过Delete[表,位置]、Insert[表,位置]来向表中按位置插入或删除元素,如要删除上面提到的table中的aaa,你可以用Delete[table,{3,1}]来实现;Sort[表]给出了表中各元素的大小顺序,Reverse[表]、RotateLeft[表,整数n]、RotateRight[表,整数n]可以分别将一个表进行翻转、左转n个元素、右转n个元素等操作,Length[表]给出了表第一个层次上的元素个数,Position[表,表达式]给出了表中出现该表达式的位置,Count[表,表达式]则给出表达式出现的次数。各种表的操作函数还有很多,这里就不再一一介绍了。
三.图形函数
Mathematica的图形函数十分丰富,用寥寥几句就可以画出复杂的图形,而且可以通过变量和文件存储和显示图形,具有极大的灵活性。
图形函数中最有代表性的函数为Plot[表达式,{变量,下限,上限},可选项],(其中表达式还可以是一个\表达式表\,这样可以在一个图里画多个函数);变量为自变量;上限和下限确定了作图的范围;可选项可要可不要,不写系统会按默认值作图,它表示对作图的具体要求。例如Plot[Sin[x],{x,0,2*Pi},AspectRatio-1]表示在0 .二维函数作图 Plot[函数f,{x,xmin,xmax},选项] 在区间{x,xmin,xmax}上,按选项的要求画出函数f的图形 Plot[{函数1,函数2},{x,xmin,xmax},选项] 在区间{x,xmin,xmax}上,按选项的要求画出几个函数的图形 图一.用Plot生成x*Sin[1/x]的图形 0.40.30.20.1-0.4-0.2-0.1-0.20.20..二维参数画图函数 图二.用ParametricPlot生成? 1 ParametricPlot[{x[t],y[t]},{t,t0,t1},选项] 画一个X轴,Y轴坐标为{x[t],y[t]},参变量t在[t0,t1]中的参数曲线 ?x?sin[t]的图形 ?y?sin[2t]0.5-1-0.50.5-0.5-1 .三维函数作图 Plot3D[f[x,y],{x,x0,x1},{y,y0,y1},选项] 在区域x?[x0,x1]和y?[y0,y1]上,画出空间曲面f[x,y]. 图3.用Plot3D生成的Sin[x]*Cos[y]的三维图形 10.50-0.5-10-202-2 除Plot,二维参数方程作图的ParametricPlot[{x(t),y(t)},{t,下限,上限},可选项]、三维作图的Plot3D[二维函数表达式,{变量1,下限,上限}, {变量2,下限,上限},可选项}]、三维参数方程作图的ParametricPlot3D[{x(u,v),y(u,v),z(u,v)},{u,下限,上限},{v,下限,上限},可选项]外,还有画二维等高线图ContourPlot[二元表达式,{变量1,下限,上限}, {变量2,下限,上限},可选项}]、画二维密度图的DensityPlot[二元表达式,{变量1,下限,上限}, {变量2,下限,上限},可选项}]等等不一而足。 除使用上述函数作图以外,Mathematica还可以象其他语言一样使用图形元语言作图,如画点函数Point[x,y],画线函数Line[x1,y1,x2,y2],画圆的Circle[x,y,r],画矩形和多边形的Rectangle和Polygon,字符输出的Text[字符串,输出坐标],还有颜色函数RGBColor[red,green,blue]、Hue[],GrayLevel[gray]来描述颜色的亮度、灰度、饱和度,用PointSize[相对尺度]、Thickness[相对尺度]来表示点和线的宽度。总之Mathematica可以精确地调节图形的每一个特征。 四.数学函数的用法 Mathematica系统内核提供了丰富的数学计算的函数,包括极限、积分、微分、最值、极值、统计、规划等数学的各个领域,复杂的数学问题简化为对函数的调用,极大地提高了解决问题的效率。 Mathematica提供了所有的三角、反三角、双曲、反双曲、各种特殊函数(如贝塞尔函数系、椭圆函数等),各种复数函数(如Im[z],Re[z],Conjugate[z], Abs[z],Arg[z]),各种随机函数(如Random[n]可以通过不同的参数产生任意范围内整型、实型任意分布的随机数),矩阵运算函数(如求特征值特征向量的EigenVector[],EigenValue[],求逆的Inverse[]等)。 Mathematica还提供了大量数学操作的函数,如取极限的Limit[f[x],{x,a}],求微分的D[f[x],x],全微分的Dt[f[x],x],不定积分的Integrate[f[x],x]和定积分的Integrate[f[x],{x,a,b}],解 任意方程的Solve[lhs=rhs,x]及微分方程的DSolve[lhs=rhs,x],解幂级数和付立叶展开的Series[f[x]],Fourier[f[x]]及其逆变化InverseSeries,InverseFourier, 求和函数Sum[],求积函数Product[],以上函数均可以适用于多维函数或多维方程。 Mathematica中还有相当数量的数值计算函数,最常用的是N[表达式,整数]可以求出表达式精确到指定有效数字的数值解,还有如数值求积分的NIntegrate[],求方程数值根的NSolve[]和NDSolve[],最小、最大值的NFindMinimum[]和NFindMaximum[]等等。 Mathematica还有各种表达式操作的函数,如取分子、分母的 Numerator[expr] , Denormator[expr],取系数的Coefficient[expr],因式分解的Factor[expr],以及展开的Expand[expr]和ExpandAll[expr],表达式化简的Simplify[expr]等。expr代表一个任意的表达式。 . 求极限Mathematica的基本语法特征 如果你是第一次使用Mathematica,那么以下几点请你一定牢牢记住: Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。 系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。 当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。 一.数的表示及计算 1.在Mathematica中你不必考虑数的精确度,因为除非你指定输出精度,Mathematica总会以绝对精确的形式输出结果。例如:你输入 In[1]:=378/123,系统会输出Out[1]:=126/41,如果想得到近似解,则应输入 In[2]:=N[378/123,5],即求其5位有效数字的数值解,系统会输出Out[2]:=3.073 2,另外Mathematica还可以根据你前面使用的数字的精度自动地设定精度。 Mathematica与众不同之处还在于它可以处理任意大、任意小及任意位精度的数值,如100^7000,2^(-2000)等数值可以很快地求出,但在其他语言或系统中这是不可想象的,你不妨试一试N[Pi,1000]。 Mathematica还定义了一些系统常数,如上面提到的Pi(圆周率的精确值),还有E(自然对数的底数)、I(复数单位),Degree(角度一度,Pi/180),Infinity(无穷大)等,不要小看这些简单的符号,它们包含的信息远远大于我们所熟知的它们的近似值,它们的精度也是无限的。 f(x)的一般形式是: 计算函数极限limx?x0Limit[expr,x->x0] x->x0时函数的极限 Limit[expr,x->x0,Direction->-1] x->x0Limit[expr,x->x0, Direction->1] x->x0In[1]:= Out[1]:=1 LimitSinxx, x?时函数的极限 时函数的极限 @@D??D??. 表示 微商和微分 在Mathematica中能方便地计算任何函数表达式的任意阶微商(导数).如果f是一元函数,D[f,x] df(x)?f.微商函数的常用形式如下: ;如果f是多元函数,D[f,x]表示 dx?x?D[f,x] 计算偏导数f ?x??D[f,x1,x2,…] 计算多重导数…f ?x1?x2D[f,{x,n}] 计算n阶导数In[1]:=D[x^x,x] Out[1]:= xx1+LogH@DLdf dx??xnnf 下面列出全微分函数Dt的常用形式及其意义: Dt[f] 全微分 df Dt[f,x] 全导数 Dt[f,x1,x2,…] 多重全导数 In[1]:=Dt[x^2+y^2] Out[1]:= D2xDtx+2y@D@Ddfdf...f dx1dx2. 不定积分和定积分 1. 不定积分 Integreate函数主要计算只含有1“简单函数”的被积函数. “简单函数”包括有理函数、指数函数、对数函数和三角函数与反三角函数。不定积分一般形式如下: Integrate[f,x] 计算不定积分?f(x)dx Integrate[f,x,y] 计算不定积分?dx?f(x,y)dy Integrate[f,x,y,z] 计算不定积分?dx?dy?f(x,y,z)dz In[1]:= Out[1]:= In[2]:= Out[2]:= Integrate112Log-1+x- xIntegrate3 x^2+y,xy+3@??HLD@D@D@Dx^2- 112Log1 2.定积分 计算定积分的命令和计算不定积分是同一个Integrate函数,在计算定积分时,除了要给出变量外还要给出积分的上下限。当定积分算不出准确结果时,用N[%]命令总能得到其数值解.Nintegrate也是计算定积分的函数,其使用方法和形式和Integrate函数相同.用Integrate函数计算定积分得到的是准确解,Nintegrate函数计算定积分得到的是近似数值解.计算多重积分时,第一个自变量相应于最外层积分放在最后计算. Integrate[f,{x,a,b}] 计算定积分?af(x)dx NIntegrate[f,{x,a,b}] 计算定积分?af(x)dx Integrate[f,{x,a,b},{y,c,d}] 计算定积分?adx?cf(x,y)dy NIntegrate[f,{x,a,b},{y,c,d}] 计算定积分?adx?cf(x,y)dy In[1]:= Out[1]:= In[2]:= Out[2]:= In[3]:= Out[3]:= bdbdbbIntegrateCosx^2+Sinx^3,x, 0,76NIntegrateCosx^2+Sinx^3,x, 0, 0.90Integratex+y,x,b,a,y, 0,32a3@@D@D8 幂级数 幂级数展开函数Series的一般形式: Series[expr,{x,x0,n}] 将expr在x=x0点展开到n阶的级数 Series[expr,{x,x0,n},{y,y0,m}] 先对y展开到m阶再对x展开n阶幂级数 用Series展开后,展开项中含有截断误差OIn[1]:= Out[1]:= In[2]:= SeriesSin2 x,x, 0,2x-4x33Seriesfx,x, o,fo+fo¢Out[2]:= In[3]:= Out[3]:= SeriesCosx Cosy,x,0,3,y, 0,1-y22@@D8 n+4x515 +Ox-o+12f¢¢ox-o2+16f3ox-Ox-o4 +Oy4+-12+y24+Oy4x+O2 . 常微分方程 求解常微分方程和常微分方程组的函数的一般形式如下: Dsolve[eqns,y[x],x] 解y(x)的微分方程或方程组eqns,x为变量 Dsolve[eqns,y,x] 在纯函数的形式下求解 NDsolve[eqns,y[x],x,{xmin,xmax}] 在区间{xmin,xmax}上求解变量x的数的形式下求解常微分方程和常微分方程组eqns的数值解 In[1]:= Out[1]:= In[2]:= Out[2]:= xDSolvey'x??ayx,yyx??ax CDSolveDSolveIn[3]:= t@@D@D@D8@D@D<@8@D@D@D<@DD8@D<@8@D@D@D@D<8@D@D Out[3]:= 9@DI@D@D@D@DM@DI@D@D@D@DM=xt?yt?1212?-tC1+?2tC1-C2+?2tC2?-t-C1+?2tC1+C2+?2tC 2. 线性代数 1. 定义向量和矩阵函数 定义一个矩阵,可用函数Table或Array.当矩阵元素能用一个函数表达式时,用函数Table在定义矩阵大小的同时也给每个矩阵元素定义确定的值.用函数Range只能定义元素为数值的向量.Array只能用于定义向量、矩阵和张量,并规定矩阵和张量的元素下标从1开始.Array的一般形式: Array[向量元素名,n,f] 定义下标从f开始的有n个元素的向量,当f是1时可省略. Array[矩阵元素名,{m,n}] 定义m行n列的矩阵.其中:矩阵元素名是一个标识符,表示矩阵元素的名称,当循环范围是{u,v,w}时定义一个张量. Table[表达式f,循环范围] 表达式f表示向量或矩阵元素的通项公式;循环范围定义矩阵的大小. 循环范围的一般形式:{循环变量名,循环初值,循环终值,循环步长}. 在Array或Table的循环范围表示方法略有区别.请在下面的实例中注意观察. In[1]:= Out[1]:= In[2]:= Out[2]:= In[3]:= Out[3]:= In[4]:= Out[4]:= In[5]:= Tableai,j,i,2, j,a1,1,a1,2U=Arraya, 2,(*IndentityMatrix[n]生成n维矩阵*) IdentityMatri1,0,0,0,1,0,0, 0,DiagonalMatrix(*TableForm[m]或MatrixForm[m]按矩阵形式输出m*) TableFor100020 @@D8<8 ,a2,1,a2,生成对角元素为表元素的对角矩阵*) 1,(*2,1,0,0,0,2,0,0, 0,Out[5]:= 一个矩阵可用一个变量表示,如In[2]所示U是一个矩阵,则U[[I]]表示U的第I行的N个元素;Transpose[U][[j]]表示U的第J行的M个元素;U[[I,j]]或a[I,j]表示U的第I行第J列元素;U[[{i1,i2,…,ip},{j1,j2,…,jq}]]表示由行为{i1,i2,…,ip}和列为{j1,j2,…,jq}组成的子矩阵. 2.矩阵的运算符号和函数 表达式 A+c A+B cA U.V A.B Det[M] Transepose[M] Inverse[M] Eigenvalus[A] Eigenvalus[N[A]] Eigenvectors[A] Eigenvectors[N[A]] Eigensystem[A] Eigensystem[N[A]] 意义 A为矩阵,c为标量,c与A中的每一个元素相加 A,B为同阶矩阵或向量,A与B的对应元素相加 A为矩阵,c为标量,c与A中的每个元素相乘 向量U与V的内积 矩阵A与矩阵B相乘,要求A的列数等于B的行数 计算矩阵M的行列式的值 M计算矩阵M的逆矩阵(MM的转置矩阵(或MT') ) ?1计算矩阵A的全部(准确解)特征值 计算矩阵A的全部(数值解)特征值 计算矩阵A的全部(准确解)特征向量 计算矩阵A的全部(数值解)特征向量 计算矩阵A的所有(准确解)特征值和特征向量 计算矩阵A的所有(数值解)特征值和特征向量 3. 方程组求解函数 在Mathematica中用LinerSolve[A,B],求解满足AX=B的一个解.如果A的行列式不为零,那么这个解是方程组的唯一解; 如果A的行列式是零,那么这个解是方程组的一个特解,方程组的全部解由基础解系向量的线性组合加上这个特解组成. NullSpace[A]计算方程组AX=0的基础解系的向量表,用LinerSolve[A,B]和NullSpace[A]联手解出方程组AX=B的全部解. Mathematica中还有一个美妙的函数RowReduce[A],它对A的行向量作化间成梯形的初等线性变换.用RowReduce可计算矩阵的秩,判断向量组是线性相关还是线性无关和计算极大线性无关组等工作. 解方程组函数 意义 RowReduce[A] 作行的线性组合化简A,A为m行n列的矩阵 LinerSolve[A,B] 求解满足AX=B的一个解,A为方阵 NullSpace[A] 求解方程组AX=0的基础解系的向量表, A为方阵 113310121-1-11,计算A的秩,计算AX=0的基础解系. 例:已知A=In[1]:= In[2]:= Out[2]:= A= RowReduc8<8<8<8<@D8<8<8<8< 1,1,1,1,1,0,-1,1,3,1,-1,3,3,2,1,显然,A的秩是2*) 1,0,-1,1,0,1,2,0,0,0,0,0,0,0,(*0,In[3]:= Out[3]:= NullSpac@D8<8< -1,0,0,1,1,-2,(*A1,的两个线性无关解*) 五.程序流程控制 作为一种语言,Mathematica提供了分支、循环、跳转等程序控制语句,如 If[test,block1,block2]表明满足条件test,则执行语句块block1,否则执行block2;Switch[expr,test1,block1,test2,block2,....]表示如果表达式expr的值等于第i个testi的值,则执行语句块blocki。 循环语句有For[赋初值,循环条件,增量语句,语句块]表示如果满足循环条件,则执行语句块和增量语句,直到不满足条件为止,While[test,block]表明如果满足条件test则反复执行语句块block,否则跳出循环,Do[block,{i,imin,imax,istep}]与前者功能是相同的。还有Goto[lab], Label[lab]提供了程序中无条件跳转,Continue[]和Break[]提供了继续循环或跳出循环的控制,Catch[语句块1]和Throw[语句块2]提供了运算中对异常情况的处理。另外,在程序中书写注释可以用一对\ *)\括起来,注释可以嵌套。 六.其他 以上是对Mathematica语法的一些特点做了一个很粗略的介绍,如果同学们对Mathematica感兴趣,你最好还是亲自使用一下。上机的过程中,希望你注意以下几点∶ 1. 使用帮助,Mathematica的帮助文件提供了Mathematica内核的基本用法的说明,十分详细,可以参照学习。 2. 你可以使用\符号名\或\符号名\来获得关于该符号(函数名或其他)的粗略或详细介绍。符号名中还可以使用通配符,例如?M*,则系统将给出所有以M开头的关键词和函数名,再如??For将会得到关于For语句的格式和用法的详细情况。 3. 在Mathematica的编辑界面中输入语句和函数,确认光标处于编辑状态(不断闪烁),然后按Insert键来对这一段语句进行求值。如果语句有错,系统将用红色字体给出 出错信息,你可以对已输入的语句进行修改,再运行。如果运行时间太长,你可以通过Alt+.(Alt+句号)来中止求值。 4. 对函数名不确定的,可先输入前面几个字母(开头一定要大写),然后按Ctrl+K,系统会自动补全该函数名。 关于Mathematica我们就暂时介绍到这里,由于水平有限,只能介绍一些基本用法,有兴趣的同学可以多上机,自己摸索,一定会有收获的。当然,计算机是为我们服务的,我们不是为了学习而学习,而是应该把它当成一种有力的工具,应用与我们的日常学习、工作和生活中。希望Mathematica会为你将来的探索之路增添一份力量。 七.应用例子
正在阅读:
Mathematica学习之路07-06
工程流体力学(袁恩熙 著) 石油工业出版社 课后答案09-30
山水市盘活闲置资源资产实施方案04-27
成立黄河金三角高职教育集团的可行性分析04-23
以暴制暴是正义09-29
集体资产收益分配办法03-17
丁香园骨科考试题库05-05
风景就在身边07-15
2015年药学(士)卫生资格初级考试模拟试题含答案11-13
“许衡,字仲平”阅读答案及翻译11-16
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 之路
- Mathematica
- 学习