Automobiles - Vehicle_Dynamics
更新时间:2023-08-19 18:15:01 阅读量: 高中教育 文档下载
S
CIMANYD ELCIHEVFACHHOCHSCHULEREGENSBURGUNIVERSITYOFAPPLIEDSCIENCES
HOCHSCHULEFÜR
TECHNIKWIRTSCHAFT
SOZIALES
LECTURENOTESProf.Dr.GeorgRill©October
2003
download:http://homepages.fh-regensburg.de/%7Erig39165/
Contents
Contents
1Introduction
1.1Terminology.............................
.......1.1.1VehicleDynamics.............................1.1.2Driver....................................1.1.3Vehicle...................................1.1.4Load....................................1.1.5Environment................................1.2Wheel/AxleSuspensionSystems..................
.......1.2.1GeneralRemarks.............................1.2.2MultiPurposeSuspensionSystems....................1.2.3Speci cSuspensionSystems.......................1.3SteeringSystems..........................
.......1.3.1Requirements...............................1.3.2RackandPinionSteering.........................1.3.3LeverArmSteeringSystem........................1.3.4DragLinkSteeringSystem........................1.3.5BusSteerSystem.............................1.4De nitions..............................
.......1.4.1CoordinateSystems............................1.4.2ToeandCamberAngle....................
.......1.4.2.1De nitionsaccordingtoDIN70000...............1.4.2.2Calculation.....................
.......1.4.3SteeringGeometry......................
.......1.4.3.1Kingpin..............................1.4.3.2CasterandKingpinAngle....................1.4.3.3DisturbingForceLever,CasterandKingpinOffset.......
2TheTire
2.1Introduction......................
...............2.1.1TireDevelopment.............................2.1.2TireComposites..............................2.1.3ForcesandTorquesintheTireContactArea...............2.2ContactGeometry..................
...............
I111223344455566778899910101112131313131415
I
2.2.1DynamicRollingRadius..........................2.2.2ContactPoint................................2.2.3LocalTrackPlane.............................2.2.4ContactPointVelocity...........................2.3WheelLoad....................................2.4LongitudinalForceandLongitudinalSlip.....................2.5LateralSlip,LateralForceandSelfAligningTorque................2.6CamberIn uence.................................2.7BoreTorque....................................2.8
TypicalTireCharacteristics............................3LongitudinalDynamics
3.1DynamicWheelLoads.................
..............3.1.1SimpleVehicleModel...........................3.1.2In uenceofGrade.............................3.1.3AerodynamicForces............................3.2MaximumAcceleration.................
..............3.2.1TiltingLimits................................3.2.2FrictionLimits................................3.3DrivingandBraking..................
..............3.3.1SingleAxleDrive..............................3.3.2BrakingatSingleAxle...........................3.3.3OptimalDistributionofDriveandBrakeForces..............3.3.4DifferentDistributionsofBrakeForces...................3.3.5Anti-Lock-Systems.............................3.4DriveandBrakePitch.................
..............3.4.1VehicleModel...............................3.4.2EquationsofMotion............................3.4.3Equilibrium.................................3.4.4DrivingandBraking............................3.4.5BrakePitchPole..............................
4LateralDynamics
4.1KinematicApproach.........
.......................4.1.1KinematicTireModel............................4.1.2AckermannGeometry...........................4.1.3SpaceRequirement............................4.1.4VehicleModelwithTrailer..
.......................4.1.4.1Position..............................4.1.4.2Vehicle..............................4.1.4.3EnteringaCurve.........................4.1.4.4Trailer...............................4.1.4.5CourseCalculations
.......................4.2SteadyStateCornering.......
.......................
II
151618192020232527283030303132333333343435363838393941424344454545454648484951515253
4.2.1OverturningLimit..............................4.2.2RollSupportandCamberCompensation.................4.2.3RollCenterandRollAxis.........................4.2.4WheelLoads................................4.2.5CorneringResistance...........................4.3SimpleHandlingModel.................
.............4.3.1Forces...................................4.3.2Kinematics.................................4.3.3LateralSlips................................4.3.4EquationsofMotion............................4.3.5Stability......................
.............4.3.5.1Eigenvalues...........................4.3.5.2LowSpeedApproximation....................4.3.5.3HighSpeedApproximation.......
.............4.3.6SteadyStateSolution..............
.............4.3.6.1SideSlipAngleandYawVelocity................4.3.6.2SteeringTendency........................4.3.6.3SlipAngles...............
.............4.3.7In uenceofWheelLoadonCorneringStiffness.............5VerticalDynamics
5.1Goals........................................5.2BasicTuning.....................
...............5.2.1SimpleModels...............................5.2.2Track....................................5.2.3SpringPreload...............................5.2.4Eigenvalues................................5.2.5FreeVibrations...............................5.3NonlinearForceElements..............
...............5.3.1QuarterCarModel.............................5.3.2RandomRoadPro le...........................5.3.3VehicleData................................5.3.4QualityCriteria...............................5.3.5OptimalParameter..............
...............5.3.5.1LinearCharacteristics......................5.3.5.2NonlinearCharacteristics....................5.3.5.3LimitedSpringTravel........
...............5.4DynamicForceElements..............
...............5.4.1SystemResponseintheFrequencyDomain
...............5.4.1.1FirstHarmonicOscillation....................5.4.1.2Sweep-SineExcitation.......
...............5.4.2Hydro-Mount.................
...............5.4.2.1PrincipleandModel.......................5.4.2.2DynamicForceCharacteristics..
...............
53565859606262626364656566666767697070737373737474757678787980808181818384848486878789
III
5.5DifferentIn uencesonComfortandSafety....................90
5.5.1VehicleModel...............................905.5.2SimulationResults.............................916DrivingBehaviorofSingleVehicles
6.1StandardDrivingManeuvers...........
6.1.1SteadyStateCornering..........6.1.2StepSteerInput..............6.1.3DrivingStraightAhead...........
6.1.3.1RandomRoadPro le......6.1.3.2SteeringActivity.........
6.2CoachwithdifferentLoadingConditions.....
6.2.1Data....................6.2.2RollSteerBehavior.............6.2.3SteadyStateCornering..........6.2.4StepSteerInput..............6.3DifferentRearAxleConceptsforaPassengerCar
939393949595979898989999100
................................................................................................................................................................................................
IV
1Introduction
1.1Terminology
1.1.1VehicleDynamics
TheExpression’VehicleDynamics’encompassestheinteractionof
driver, vehicle loadand environment
Vehicledynamicsmainlydealswith
theimprovementofactivesafetyanddrivingcomfortaswellas thereductionofroaddestruction.Invehicledynamics
computercalculations testrigmeasurementsand eldtestsareemployed.
Theinteractionsbetweenthesinglesystemsandtheproblemswithcomputercalculationsand/ormeasurementsshallbediscussedinthefollowing.
1
VehicleDynamicsFHRegensburg,UniversityofAppliedSciences
1.1.2Driver
Byvariousmeansofinterferencethedrivercaninterferewiththevehicle:
steeringwheel gaspedal brakepedaldriver clutch
gearshift
lateraldynamics
longitudinaldynamics
→vehicle
Thevehicleprovidesthedriverwithsomeinformation:
longitudinal,lateral,vertical
sound:motor,aerodynamics,tiresvehicle →driver instruments:velocity,externaltemperature,...
Theenvironmentalsoin uencesthedriver:
environment
vibrations:
climate
traf cdensity →driver
track
Adriver’sreactionisverycomplex.Toachieveobjectiveresults,an”ideal”driverisusedincomputersimulationsandindrivingexperimentsautomateddrivers(e.g.steeringmachines)areemployed.
Transferringresultstonormaldriversisoftendif cult,if eldtestsaremadewithtestdrivers.Fieldtestswithnormaldrivershavetobeevaluatedstatistically.Inalltests,thedriver’ssecuritymusthaveabsolutepriority.
Drivingsimulatorsprovideanexcellentmeansofanalyzingthebehaviorofdriverseveninlimitsituationswithoutdanger.
Forsomeyearsithasbeentriedtoanalyzetheinteractionbetweendriverandvehiclewithcomplexdrivermodels.
1.1.3Vehicle
ThefollowingvehiclesarelistedintheISO3833directive:
Motorcycles, PassengerCars, Busses, Trucks
2
FHRegensburg,UniversityofAppliedSciences
AgriculturalTractors, PassengerCarswithTrailer TruckTrailer/Semitrailer, RoadTrains.
Prof.Dr.-Ing.G.Rill
Forcomputercalculationsthesevehicleshavetobedepictedinmathematicallydescribablesubstitutesystems.Thegenerationoftheequationsofmotionsandthenumericsolutionaswellastheacquisitionofdatarequiregreatexpenses.
IntimesofPCsandworkstationscomputingcostshardlymatteranymore.
Atanearlystageofdevelopmentoftenonlyprototypesareavailablefor eldand/orlaboratorytests.
Resultscanbefalsi edbysafetydevices,e.g.jockeywheelsontrucks.
1.1.4Load
Trucksareconceivedfortakingupload.Thustheirdrivingbehaviorchanges.
Load
mass,inertia,centerofgravitydynamicbehaviour(liquidload)
Incomputercalculationsproblemsoccurwiththedeterminationoftheinertiasandthemod-ellingofliquidloads.
Eventheloadingandunloadingprocessofexperimentalvehiclestakessomeeffort.Whenmakingexperimentswithtanktrucks, ammableliquidshavetobesubstitutedwithwater.Theresultsthusachievedcannotbesimplytransferredtorealloads.
1.1.5Environment
TheEnvironmentin uencesprimarilythevehicle:
Environment
Road:irregularities,coef cientoffrictionAir:resistance,crosswind
→vehicle
butalsoin uencesthedriver
Environment
climate
visibility
→driver
Throughtheinteractionsbetweenvehicleandroad,roadscanquicklybedestroyed.
Thegreatestproblemin eldtestandlaboratoryexperimentsisthevirtualimpossibilityofreproducingenvironmentalin uences.
Themainproblemsincomputersimulationarethedescriptionofrandomroadirregularitiesandtheinteractionoftiresandroadaswellasthecalculationofaerodynamicforcesandtorques.
3
VehicleDynamicsFHRegensburg,UniversityofAppliedSciences
1.2Wheel/AxleSuspensionSystems
1.2.1GeneralRemarks
TheAutomotiveIndustryusesdifferentkindsofwheel/axlesuspensionsystems.Importantcriteriaarecosts,spacerequirements,kinematicpropertiesandcomplianceattributes.
1.2.2MultiPurposeSuspensionSystems
TheDoubleWishboneSuspension,theMcPhersonSuspensionandtheMulti-LinkSuspensionaremultipurposewheelsuspensionsystems,
Fig.1.1.
Figure1.1:DoubleWishbone,McPhersonandMulti-LinkSuspension
Theyareusedassteeredfrontornonsteeredrearaxlesuspensionsystems.Thesesuspen-sionsystemsarealsosuitablefordrivenaxles.
InaMcPhersonsuspensionthespringismountedwithaninclinationtothestrutaxis.Thusbendingtorquesatthestrutwhichcausehighfrictionforcescanbereduced.
Atpickups,trucksandbussesoftensolidaxlesareused.Solidaxlesareguidedeitherbyleaf
1
Figure1.2:SolidAxles
4
FHRegensburg,UniversityofAppliedSciences
springsorbyrigidlinks,
Fig.1.2.Solidaxlestendtotramponroughroad.
Prof.Dr.-Ing.G.Rill
Leafspringguidedsolidaxlesuspensionsystemsareveryrobust.Dryfrictionbetweentheleafsleadstolockingeffectsinthesuspension.Althoughtheleafspringsprovideaxleguidanceonsomesolidaxlesuspensionsystemsadditionallinksinlongitudinalandlateraldirectionareused.Thusthetypicalwindupeffectonbrakingcanbeavoided.
Solidaxlessuspendedbyairspringsneedatleastfourlinksforguidance.Inadditiontoagooddrivingcomfortairspringsallowlevelcontroltoo.
1.2.3Speci cSuspensionSystems
TheSemi-TrailingArm,theSLAandtheTwistBeamaxlesuspensionaresuitableonlyfornonsteeredaxles,Fig.1.3.
Figure1.3:Speci cWheel/AxlesSuspensionSystems
Thesemi-trailingarmisasimpleandcheapdesignwhichrequiresonlyfewspace.Itismostlyusedfordrivenrearaxles.
TheSLAaxledesignallowsanearlyindependentlayoutoflongitudinalandlateralaxlemo-tions.ItissimilartotheCentralControlArmaxlesuspension,wherethetrailingarmiscom-pletelyrigidandhenceonlytwolaterallinksareneeded.
Thetwistbeamaxlesuspensionexhibitseitheratrailingarmorasemi-trailingarmcharacter-istic.Itisusedfornondrivenrearaxlesonly.Thetwistbeamaxleprovidesenoughspaceforsparetireandfueltank.
1.3SteeringSystems
1.3.1Requirements
Thesteeringsystemmustguaranteeeasyandsafesteeringofthevehicle.Theentiretyofthemechanicaltransmissiondevicesmustbeabletocopewithallloadsandstressesoccurringinoperation.
5
VehicleDynamicsFHRegensburg,UniversityofAppliedSciences
Inordertoachieveagoodmaneuverabilityamaximumsteerangleofapprox.30 mustbeprovidedatthefrontwheelsofpassengercars.Dependingonthewheelbasebussesandtrucksneedmaximumsteeranglesupto55 atthefrontwheels.
Recentlysomecompanieshavestartedinvestigationson’steerbywire’techniques.
1.3.2RackandPinionSteering
Rackandpinionisthemostcommonsteeringsystemonpassengercars,Fig.
1.4.Therackmaybelocatedeitherinfrontoforbehindtheaxle.TherotationsofthesteeringwheelδLare
Figure1.4:RackandPinionSteering
rstlytransformedbythesteeringboxtotheracktraveluZ=uZ(δL)andthenviathedraglinkstransmittedtothewheelrotationsδ1=δ1(uZ),δ2=δ2(uZ).Hencetheoverallsteeringratiodependsontheratioofthesteerboxandonthekinematicsofthesteerlinkage.
1.3.3LeverArmSteeringSystem
UsingaleverarmsteeringsystemFig.1.5,largesteeranglesatthewheelsarepossible.This
Figure1.5:LeverArmSteeringSystem
6
FHRegensburg,UniversityofAppliedSciencesProf.Dr.-Ing.G.Rill
steeringsystemisusedontruckswithlargewheelbasesandindependentwheelsuspensionatthefrontaxle.Herethesteeringboxcanbeplacedoutsideoftheaxlecenter.
TherotationsofthesteeringwheelδLare rstlytransformedbythesteeringboxtothero-tationofthesteerleversδG=δG(δL).Thedraglinkstransmitthisrotationtothewheelδ1=δ1(δG),δ2=δ2(δG).Hence,againtheoverallsteeringratiodependsontheratioofthesteerboxandonthekinematicsofthesteerlinkage.
1.3.4DragLinkSteeringSystem
Atsolidaxlesthedraglinksteeringsystemisused,
Fig.1.6.
Figure1.6:DragLinkSteeringSystem
TherotationsofthesteeringwheelδLaretransformedbythesteeringboxtotherotationofthesteerleverarmδH=δH(δL)andfurtherontotherotationoftheleftwheel,δ1=δ1(δH).Thedraglinktransmitstherotationoftheleftwheeltotherightwheel,δ2=δ2(δ1).Thesteeringratioisde nedbytheratioofthesteerboxandthekinematicsofthesteerlink.Heretheratioδ2=δ2(δ1)givenbythekinematicsofthedraglinkcanbechangedseparately.
1.3.5BusSteerSystem
Inbussesthedriversitsmorethan2minfrontofthefrontaxle.Here,sophisticatedsteersystemsareneeded,Fig.1.7.
TherotationsofthesteeringwheelδLaretransformedbythesteeringboxtotherotationofthesteerleverarmδH=δH(δL).Viathesteerlinktheleftleverarmismoved,δH=δH(δG).Thismotionistransferredbyacouplinglinktotherightleverarm.Viathedraglinkstheleftandrightwheelarerotated,δ1=δ1(δH)andδ2=δ2(δH).
7
VehicleDynamics
FHRegensburg,UniversityofAppliedSciences
Figure1.7:BusSteerSystem
1.4De nitions
1.4.1CoordinateSystems
Invehicledynamicsseveraldifferentcoordinatesystemsareused,Fig1.8.
Figure1.8:CoordinateSystems
Theinertialsystemwiththeaxesx0,y0,z0is xedtothetrack.Withinthevehicle xedsystemthexF-axisispointingforward,theyF-axisleftandthezF-axisupward.TheorientationofthewheelisgivenbytheunitvectoreyRindirectionofthewheelrotationaxis.
8
FHRegensburg,UniversityofAppliedSciencesProf.Dr.-Ing.G.Rill
Theunitvectorsinthedirectionsofcircumferentialandlateralforcesexandeyaswellasthetracknormalenfollowfromthecontactgeometry.
1.4.2ToeandCamberAngle
1.4.2.1De nitionsaccordingtoDIN70000
Theanglebetweenthevehiclecenterplaneinlongitudinaldirectionandtheintersectionlineofthetirecenterplanewiththetrackplaneisnamedtoeangle.Itispositive,ifthefrontpartofthewheelisorientedtowardsthevehiclecenterplane,
Fig.1.9.
front
F
F
rear
Figure1.9:PositiveToeAngle
Thecamberangleistheanglebetweenthewheelcenterplaneandthetracknormal.Itispositive,iftheupperpartofthewheelisinclinedoutwards,Fig.1.10.
topF
F
bottom
Figure1.10:PositiveCamberAngle
1.4.2.2Calculation
Thecalculationofthetoeangleisdonefortheleftwheel.TheunitvectoreyRindirectionofthewheelrotationaxisisdescribedinthevehicle xedcoordinatesystemF,Fig.1.11
eyR,F=
(1)eyR,F(2)eyR,F(3)eyR,F
T
,(1.1)
wheretheaxisxFandzFspanthevehiclecenterplane.ThexF-axispointsforwardandthezF-axispointsupward.Thetoeangleδcanthenbecalculatedfrom
9
VehicleDynamicsFHRegensburg,UniversityofAppliedSciences
Figure1.11:ToeAngle
tanδ=
eyR,F
(2)
eyR,F
(1)
.(1.2)
Therealcamberangleγfollowsfromthescalarproductbetweentheunitvectorsinthedirec-tionofthewheelrotationaxiseyRandinthedirectionofthetracknormalen,
sinγ= eTneyR.
Thewheelcamberanglecanbecalculatedby
(1.3)
sinγ= eyR,F.
Ona athorizontalroadbothde nitionsareequal.
(3)
(1.4)
1.4.3SteeringGeometry
1.4.3.1Kingpin
AtthesteeredfrontaxletheMcPherson-damperstrutaxis,thedoublewishboneaxisand
multi-linkwheelsuspensionordissolveddoublewishboneaxisarefrequentlyemployedinpassengercars,Fig.1.12andFig.1.13.
Thewheelbodyrotatesaroundthekingpinatsteeringmovements.
Atthedoublewishboneaxis,theballjointsAandB,whichdeterminethekingpin,are xedtothewheelbody.
TheballjointpointAisalso xedtothewheelbodyattheclassicMcPhersonwheelsuspen-sion,butthepointBis xedtothevehiclebody.
Atamulti-linkaxle,thekingpinisnolongerde nedbyreallinkpoints.Here,aswellaswiththeMcPhersonwheelsuspension,thekingpinchangesitspositionagainstthewheelbodyatwheeltravelandsteermotions.
10
FHRegensburg,UniversityofAppliedSciencesProf.Dr.-Ing.G.Rill
Figure1.12:DoubleWishboneWheel
Suspension
Figure1.13:McPhersonandMulti-LinkWheelSuspensions
1.4.3.2CasterandKingpinAngle
Thecurrentdirectionofthekingpincanbede nedbytwoangleswithinthevehicle xedcoordinatesystem,Fig.1.14.
IfthekingpinisprojectedintotheyF-,zF-plane,thekingpininclinationangleσcanbereadastheanglebetweenthezF-axisandtheprojectionofthekingpin.
TheprojectionofthekingpinintothexF-,zF-planedeliversthecasterangleνwiththeanglebetweenthezF-axisandtheprojectionofthekingpin.
Withmanyaxlesthekingpinandcasteranglecannolongerbedetermineddirectly.
Thecurrentrotationaxisatsteeringmovements,thatcanbetakenfromkinematiccalculationsheredeliversavirtualkingpin.Thecurrentvaluesofthecasterangleνandthekingpinincli-nationangleσcanbecalculatedfromthecomponentsoftheunitvectorinthedirectionofthe
11
VehicleDynamicsFHRegensburg,UniversityofAppliedSciences
Figure1.14:KingpinandCasterAngle
kingpin,describedinthevehicle xedcoordinatesystem
tanν=
with
eS,F
(3)eS,F
(1)
andtanσ=
T
eS,F
(3)eS,F
(2)
(1.5)
eS,F=
(1)eS,F(2)eS,F(3)eS,F
.(1.6)
1.4.3.3DisturbingForceLever,CasterandKingpinOffset
Thedistancedbetweenthewheelcenterandthekingpinaxisiscalleddisturbingforcelever.Itisanimportantquantityinevaluatingtheoverallsteerbehavior.
Ingeneral,thepointSwherethekingpinrunsthroughthetrackplanedoesnotcoincide
withthecontactpointP,Fig.1.15.
Figure1.15:CasterandKingpinOffset
Ifthekingpinpenetratesthetrackplanebeforethecontactpoint,thekinematickingpinoffsetispositive,nK>0.
Thecasteroffsetispositive,rS>0,ifthecontactpointPliesoutwardsofS.
12
2TheTire
2.1Introduction
2.1.1TireDevelopment
Thefollowingtableshowssomeimportantmilestonesinthedevelopmentoftires.
1839CharlesGoodyear:vulcanization
1845
RobertWilliamThompson: rstpneumatictire(severalthinin atedtubesinsidealeathercover)
1888JohnBoydDunlop:patentforbicycle(pneumatic)tires1893TheDunlopPneumaticandTyreCo.GmbH,Hanau,Germany1895
AndréandEdouardMichelin:pneumatictiresforPeugeotParis-Bordeaux-Paris(720Miles):50tirede ations,
22completeinnertubechanges1899Continental:longerlifetires(approx.500Kilometer)1904Carbonadded:blacktires.
1908FrankSeiberling:groovedtireswithimprovedroadtraction1922Dunlop:steelcordthreadinthetirebead1943Continental:patentfortubelesstires1946RadialTire
...
Table2.1:MileStonesintheDevelopmentofTires
2.1.2TireComposites
Amoderntireisamixtureofsteel,fabric,andrubber.
13
VehicleDynamicsFHRegensburg,UniversityofAppliedSciences
Reinforcements:steel,rayon,nylonRubber:natural/synthetic
Compounds:carbon,silica,chalk,...Softener:oil,resin
Vulcanization:sulfur,zincoxide,...MiscellaneousTireMass
16%38%30%10%4%2%8.5kg
Table2.2:TireComposites:195/65R15ContiEcoContact,Datafromwww.felge.de
2.1.3ForcesandTorquesintheTireContactArea
Inanypointofcontactbetweentireandtracknormalandfrictionforcesaredelivered.Accord-ingtothetire’spro ledesignthecontactareaformsanotnecessarilycoherentarea.Theeffectofthecontactforcescanbefullydescribedbyavectorofforceandatorqueinreferencetoapointinthecontactpatch.Thevectorsaredescribedinatrack- xedcoordinatesystem.Thez-axisisnormaltothetrack,thex-axisisperpendiculartothez-axisandperpen-diculartothewheelrotationaxiseyR.Thedemandforaright-handedcoordinatesystemthenalso xesthey-axis.
FxFyFzMxMyMz
longitudinalorcircumferentialforcelateralforce
verticalforceorwheelloadtiltingtorque
rollingresistancetorque
selfaligningandbore
torque
Figure2.1:ContactForcesandTorques
Thecomponentsofthecontactforcearenamedaccordingtothedirectionoftheaxes,Fig.2.1.Nonsymmetricdistributionsofforceinthecontactpatchcausetorquesaroundthexandyaxes.ThetiltingtorqueMxoccurswhenthetireiscambered.Myalsocontainstherollingresistanceofthetire.Inparticularthetorquearoundthez-axisisrelevantinvehicledynamics.Itconsistsoftwoparts,
Mz=MB+MS.(2.1)Rotationofthetirearoundthez-axiscausestheboretorqueMB.TheselfaligningtorqueMS
respectsthefactthatingeneraltheresultinglateralforceisnotappliedinthecenterofthecontactpatch.
14
FHRegensburg,UniversityofAppliedSciencesProf.Dr.-Ing.G.Rill
2.2ContactGeometry
2.2.1DynamicRollingRadius
Atanangularrotationof ,assumingthetreadparticlessticktothetrack,thede ectedtiremovesonadistanceofx,
Fig.2.2.
deflected tirerigid wheelFigure2.2:DynamicRollingRadius
Withr0asunloadedandrS=r0 rasloadedorstatictireradius
r0sin =x
and
(2.2)
r0cos =rS.
hold.
(2.3)
Ifthemovementofatireiscomparedtotherollingofarigidwheel,itsradiusrDthenhastobechosenso,thatatanangularrotationof thetiremovesthedistance
r0sin =x=rD .
Hence,thedynamictireradiusisgivenby
(2.4)
rD=
r0sin
.
(2.5)
For →0onegetsthetrivialsolutionrD=r0.
Atsmall,yet niteangularrotationsthesine-functioncanbeapproximatedbythe rsttermsofitsTaylor-Expansion.Then,(2.5)readsas
rD=r0
1
3=r0
11 2
6
.(2.6)
15
VehicleDynamicsFHRegensburg,UniversityofAppliedSciences
Withtheaccordingapproximationforthecosine-function
rS1
=cos =1 2or 2=2r02
one nallygets
rS
1
r0
(2.7)
rD=r0
remains.
11
3
rS1
r0
=
21r0+rS33
(2.8)
TheradiusrDdependsonthewheelloadFzbecauseofrS=rS(Fz)andthusisnamed
dynamictireradius.Withthis rstapproximationitcanbecalculatedfromtheundeformedradiusr0andthesteadystateradiusrS.By
vt=rD
(2.9)
theaveragevelocityisgivenwithwhichtreadparticlesaretransportedthroughthecontactarea.
2.2.2ContactPoint
Thecurrentpositionofawheelinrelationtothe xedx0-,y0-z0-systemisgivenbythewheelcenterMandtheunitvectoreyRinthedirectionofthewheelrotationaxis,
Fig.2.3.
Figure2.3:ContactGeometry
Theirregularitiesofthetrackcanbedescribedbyanarbitraryfunctionoftwospatialcoordi-nates
z=z(x,y).(2.10)
16
正在阅读:
Automobiles - Vehicle_Dynamics08-19
关于印发《全国城建档案信息化建设规划与实施纲要》的通知01-07
珍贵树种培育项目书05-08
以自信的姿势前行作文600字06-16
2017年辽宁省盘锦实验中学中考数学一模试卷含参考答案04-16
《世纪金榜》生物模拟题库 考点4细胞呼吸练习 题目含答案06-27
小学六年级毕业品德与社会试题03-15
- 1Structure and dynamics of the ‘protein folding code’ inferred
- 2A microscopic approach to spin dynamics about the meaning of
- 3雅思阅读机经真题解析-The History of Automobiles
- 4雅思阅读机经真题解析-The History of Automobiles
- 5Matching free trees, maximal cliques, and monotone game dynamics
- 6Dynamics of Fe-Ni Bubbles in Young Supernova Remnants
- 7The existence problem for dynamics of dissipative systems in quantum probability
- 8飞行器设计专业英文介绍_Flight vehicle design
- 9Microsoft Dynamics CRM 4.0 规划指南 - 图文
- 10dynamics_CRM_自定义指南(中文)
- 上海大众、一汽大众、东风日产车型与VIN代号对照表
- 第2章服装原型及原型制作
- 江苏省工商行政管理系统经济户口管理办法及四项制度
- 纪检监察业务知识试题2
- 传感器综合题答案
- 北京第二外国语学院翻硕招生人数及学费
- 初三新编英语教材下册
- 公司庆中秋、迎国庆联欢会客串词
- 向区委常委会汇报安全生产工作材料
- 2006年GCT英语模拟试题(三)及答案解析
- 经济法概念的早期使用
- 我爱做家务课堂教学设计
- 学校安全工作月报表、消防安全排查表、消防隐患排查台账
- 成本会计毕业论文
- 班级文化建设论文
- 2018年天津市高考文科试题与答案汇总(Word版) - 图文
- 铁路论文
- 2017年嵌入式系统设计师考试时间及地点
- 1.111--灾害与突发公共卫生事件应急预案
- 起爆点主图 注意买入 拉升 逃顶源码指标通达信指标公式源码
- Automobiles
- Dynamics
- Vehicle