离散数学图论部分综合练习
更新时间:2023-10-02 02:05:01 阅读量: 综合文库 文档下载
- 离散数学图论思维导图推荐度:
- 相关推荐
离散数学图论部分综合练习
本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是图论部分的综合练习。
一、单项选择题
1.设图G的邻接矩阵为
??01100?011?
?10??10000??
?01001????01010??则G的边数为( ).
A.6 B.5 C.4
2.已知图G的邻接矩阵为
,
则G有( ).
A.5点,8边 B.6点,7边 C.6点,8边 D.5点,7边
3.设图G=
A.deg(V)=2?E? B.deg(V)=?E? C.?deg(v)?2E D.V?deg(v)?E
v?v?V4.图G如图一所示,以下说法正确的是 ( ) . A.{(a, d)}是割边 B.{(a, d)}是边割集 C.{(d, e)}是边割集 D.{(a, d) ,(a, c)}是边割集
5.如图二所示,以下说法正确的是 ( ). A.e是割点 B.{a, e}是点割集 C.{b, e}是点割集 D.{d}是点割集
6.如图三所示,以下说法正确的是 ( ) .
1 D.3 a? ?b ?d ? f
?c ?
e
图一
图二
A.{(a, e)}是割边 B.{(a, e)}是边割集 C.{(a, e) ,(b, c)}是边割集 D.{(d, e)}是边割集
图三
7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是 ( ).
图四
A.(a)是强连通的 B.(b)是强连通的
C.(c)是强连通的 D.(d)是强连通的 应该填写:D
8.设完全图Kn有n个结点(n≥2),m条边,当( )时,Kn中存在欧拉回路.
A.m为奇数 B.n为偶数 C.n为奇数 D.m为偶数 9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).
A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+2 10.无向图G存在欧拉通路,当且仅当( ). A.G中所有结点的度数全为偶数 B.G中至多有两个奇数度结点 C.G连通且所有结点的度数全为偶数 D.G连通且至多有两个奇数度结点
11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.
A.m?n?1 B.m?n C.m?n?1 D.n?m?1 12.无向简单图G是棵树,当且仅当( ).
A.G连通且边数比结点数少1 B.G连通且结点数比边数少1 C.G的边数比结点数少1 D.G中没有回路.
二、填空题
1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是 .
2
2.设给定图G(如图四所示),则图G的点割 集是 .
3.若图G=
a? f ? e ? b
? ? c ?d
4.无向图G存在欧拉回路,当且仅当G连通 图四
且 .
5.设有向图D为欧拉图,则图D中每个结点的入度 . 应该填写:等于出度
6.设完全图Kn有n个结点(n?2),m条边,当 时,Kn中存在欧拉回路.
7.设G是连通平面图,v, e, r分别表示G的结点数,边数和面数,则v,e和r满足的关系式 .
8.设连通平面图G的结点数为5,边数为6,则面数为 . 9.结点数v与边数e满足 关系的无向连通图就是树.
10.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 条边后使之变成树.
11.已知一棵无向树T中有8个结点,4度,3度,2度的分支点各一个,T的树叶数为 .
12.设G=
13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.
三、判断说明题
1.如图六所示的图G存在一条欧拉回路.
v1 a v2 e v5 f h b 图六
d g v4 n v3 c
2.给定两个图G1,G2(如图七所示):
(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.
3
v1
v6
v4
v5
v2
v3
v1 ? v6 ? ? v5
v? 2
? v3
? v4
图八
图七
3.判别图G(如图八所示)是不是平面图, 并说明理由.
4.设G是一个有6个结点14条边的连 通图,则G为平面图.
四、计算题
1.设图G??V,E?,其中V??a1, a2, a3, a4, a5?,
E???a1, a2?,?a2, a4?,?a3, a1?,?a4, a5?,?a5, a2??
(1)试给出G的图形表示; (2)求G的邻接矩阵;
(3)判断图G是强连通图、单侧连通图还是弱连通图?
2.设图G=
(1)画出G的图形表示; (2)写出其邻接矩阵; (2)求出每个结点的度数; (4)画出图G的补图的图形. 3.设G=
(1)给出G的图形表示; (2)写出其邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形.
4.图G=
(1)画出G的图形; (2)写出G的邻接矩阵;
(3)求出G权最小的生成树及其权值.
5.设有一组权为2,3,5,7,11,13,17,19,23,29,31,试
(1)画出相应的最优二叉树; (2)计算它们的权值. 6.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它的权.
五、证明题
1.若无向图G中只有两个奇数度结点,则这两个结点一定是连通的. 2.设G是一个n阶无向简单图,n是大于等于2的奇数.证明图G与它的
4
补图G中的奇数度顶点个数相等.
3.设连通图G有k个奇数度的结点,证明在图G中至少要添加使其成为欧拉图.
参考解答
一、单项选择题
1.B 2.D 3.C 4.C 5.A 6.D 7.D 8.C 9.A 10.D 11.A 12.A
二、填空题
1.15 2.{f},{c,e} 3.W?|S| 4.所有结点的度数全为偶数 5.等于出度 6.n为奇数 7.v-e+r =2 8.3 9.e=v-1 10.4 11.5
12.3 13.0
三、判断说明题
1.解:正确.
因为图G为连通的,且其中每个顶点的度数为偶数. 2.解:(1)图G1是欧拉图. 因为图G1中每个结点的度数都是偶数.
图G2是汉密尔顿图.
因为图G2存在一条汉密尔顿回路(不惟一): a(a, b)b(b, e) e(e, f) f (f, g) g(g, d) d(d, c) c(c, a)a
问题:请大家想一想,为什么图G1不是汉密尔顿图,图G2不是欧拉图。
(2)图G1的欧拉回路为:(不惟一):
v1(v1, v2) v2 (v2, v3) v3 (v3, v4) v4 (v4, v5)v5 (v5, v2) v2 (v2, v6)v6 (v6, v4) v4 (v4, v1)v1 3.解:图G是平面图.
因为只要把结点v2与v6的连线(v2, v6)拽 到结点v1的外面,把把结点v3与v6的连线 (v3, v6)拽到结点v4, v5的外面,就得到一个平 面图,如图九所示.
5
k条边才能2v1 ? v6 ? ? v5
v? 2
? v3
? v4 图九
4.解:错误.
不满足“设G是一个有v个结点e条边的连通简单平面图,若v≥3,则e≤3v-6.”
四、计算题
1.解:(1)图G是有向图: (2)邻接矩阵如下:
a2 ? a?3 ??010(D)??0A??10a4 ? ?a
5 ?a ?001
??01(3)图G是单侧连通图,也是弱连通图. 2.解:(1)图G如图十
v?1
v2 ? ? v5
? ?
v 3
v4 (2)邻接矩阵为 图十
??01100?10110? ????11011?
?01101????00110??(3)deg(v1)=2
deg(v2)=3 deg(v3)=4 deg(v4)=3
v?1 deg(v5)=2
v2 ? ? v5
(4)补图如图十一 v?
?3
v
4 图十一 3.解:(1)G的图形如图十二
(2)邻接矩阵: 图十二
6 000?010?000??,
001??000??
?00100??00110????11011? ??01101????00110??(3)v1,v2,v3,v4,v5结点的度数依次为1,2,4,3,2
(4)补图如图十三:
图十三 4.解:(1)G的图形表示如图十四:
图十四 (2)邻接矩阵:
?011?100??100??011??11101?11??11?
?01?10??(3)粗线表示最小的生成树,如图十五
如图十五 最小的生成树的权为1+1+2+3=7:
7
5.解:(1)最优二叉树如图十六所示: 方法(Huffman):从2,3,5,7,11,13,17 ,19,23,29,31中选2,3为最低层结点,并 从权数中删去,再添上他们的和数,即 5,5,7,11,13,17,19,23,29,31;
65 ? 160
? ? 95
42 ? ? 34 ? ? 53
31
再从5,5,7,11,13,17,19,23,29,31中选 ? 17 ? ? ? 24 ? ?
17 23 29 19 5,5为倒数第2层结点,并从上述数列中
? 10 ? ? ? 7 删去,再添上他们的和数,即7,10,11,13, 11 13 5 ? ? 17,19,23,29,31; 5 ? ? 然后,从7,10,11,13,17,19,23,29,31中 2 3
选7,10和11,13为倒数第3层结点,并从 如图十六 上述数列中删去,再添上他们的和数,即 17,17,24,19,23,29,31; ??
(2)权值为:2?6+3?6+5?5+7?4+11?4+13?4+17?3+19?3+23?3+29?3+31?2 =12+18+25+28+44+52+51+57+69+87+62=505 6.解:最优二叉树如图十七
3 ? ? 1
7 ? ? ? 4 2 12 ? ? 5 ? 3
?
2
如图十七
它的权为:1?3+2?3+2?2+3?2+4?2=27
五、证明题
1.证明:用反证法.设G中的两个奇数度结点分别为u和v.假设u和v不连通,即它们之间无任何通路,则G至少有两个连通分支G1,G2,且u和v分别属于G1和G2,于是G1和G2各含有一个奇数度结点.这与定理3.1.2的推论矛盾.因而u和v一定是连通的.
2.证明:设G??V,E?,G??V,E??.则E?是由n阶无向完全图Kn的边删去E所得到的.所以对于任意结点u?V,u在G和G中的度数之和等于u在
Kn中的度数.由于n是大于等于2的奇数,从而Kn的每个结点都是偶数度的(n?1 (?2)度),于是若u?V在G中是奇数度结点,则它在G中也是奇数度结点.故图G与它的补图G中的奇数度结点个数相等.
3.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k是偶
8
数.
又根据定理4.1.1的推论,图G是欧拉图的充分必要条件是图G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图.
k故最少要加条边到图G才能使其成为欧拉图.
2
9
正在阅读:
离散数学图论部分综合练习10-02
物理化学工科A试题04-27
2015-2016学年度新北师大版三年级数学第一学期期末模拟试卷03-22
公司装修合同范本三篇01-01
关于开展2015年度上海医药集团股份有限公司工程系列中级专业技术04-04
干式电抗器作业指导书07-18
5-SPSS上机考试练习试题10-14
新人教版小学语文一年级上册全册学案10-12
2018年河北省中考化学真题(含答案)04-26
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 离散
- 练习
- 数学
- 部分
- 综合
- 非转农
- 读写结合,提高英语写作能力
- 100+50种常见多肉植物图鉴
- 《无机非金属材料的主角 - 硅》教案
- 空间分析复习提纲
- 传统乡村地域文化景观研究进展
- 破解病句的二十三种方法的对应练习
- 外聘人员管理规定
- 宋元明清文学复习大纲
- Online instructions - Aug16Jan17
- 数字下变频基于FPGA的软件设计与实现
- 公共营养师三级理论试题及答案
- 功和机械能笔记
- 关于印发峄城区水资源管理专项整治行动实施方案的通知
- 2017-2022年中国奶茶行业市场评估与行业投资前景分析报告目录
- C2C前台、后台业务流程
- 第1章 铁道概论课程概述
- 室内进户门安装技术交底
- 00中国2012年极端天气的原因
- 《统计学》各章习题doc- 第一章练习题