7_6_状态反馈中的稳态误差分析
更新时间:2023-09-01 03:34:01 阅读量: 教育文库 文档下载
- 状态反馈控制推荐度:
- 相关推荐
State Space: Analyze and Design
CHAPTER 7
By Hui Wang hwang@http://www.77cn.com.cn FTP:10.13.21.29/168
Outline of Chapter 7Review and Introduction Controllability and Observability Linear transformation and Canonical forms State Feedback for SISO System State-Variable Feedback: steady-State Error Analysis State Observer for SISO System………..2
Outline of Section 5State-Variable Feedback: steady-State Error AnalysisBasic concept Step input: r(t)=R0u-1(t), R(s)=R0/s Ramp input: r(t)=R1u-2(t), R(s)=R1/s2 Parabolic input: r(t)=R2u-3(t), R(s)=R2/s3 Use of steady-state error coefficients
State feedback: steady-State Error Analysis 1. Basic concept A steady-state analysis of a stable system is an important design consideration (see Chap. 6 of this textbook). The three standard inputs are used (step, ramp and parabola) for a steady-state analysis of a state-variable-feedback control system. In analysis following, the phase-variable representation is used, in which the necessary values of the feedback coefficients are determined. And the results only apply when phase variables are used.
State feedback: steady-State Error Analysis2. Step input: r(t)=R0u-1(t), R(s)=R0/s Noted that developments are based on phase-variable representation, therefore, view back to P440, Eq.(13.76), the statevariable-feedback control system ratio isK G ( s w+ c w 1s w 1++ c1s+ c0 ) Y ( s)= R( s ) s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2++ (a0+ K G k1 ) K G ( s w+ c w 1s w 1++ c1s+ c0 )+ (a0+ K G k1 )
(13.76)
Y ( s)= R( s) R(s)= R0 s
s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+
Applying the final-value theoremK G c0 R0= a0+ K G k1
For zero steady-state error
y (t ) ss
R0=
K G c0 R0 a k1= c0 0 a0+ K G k1 KG
where c0≠0
(13.80)5
State feedback: steady-State Error Analysis2. Step input: r(t)=R0u-1(t), R(s)=R0/s Thus, zero steady-state error with a step input can be achieved with state-variable-feedback, even if G(s) is Type 0. For an all-pole plant (i.e. the system in which G(s) has no zeros) as followingK G c0 Y (s) G(s)== n R ( s ) 1+ G ( s ) H ( s ) s+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2++ (a0+ K G k1 )
In such an all-pole plant c0=1, and for a Type 1 or higher plant, a0=0, in that case, the required value is k1=1. Therefore, the feedback coefficient k1 is determined by the plant parameters once zero steady-state error for a step input is specified. This specification is maintained for all state-variable-feedback control system designs throughout the remainder of this text.6
State feedback: steady-State Error Analysis2. Step input: r(t)=R0u-1(t), R(s)=R0/s
From Eq.(13.76), the system characteristic equation iss n+ (a n 1+ K G k n ) s n 1+ ( a n 2+ K G k n 1 ) s n 2++ ( a0+ K G k1 )= 0
(13.81)
A necessary condition for all clo
sed-loop poles of Y(s)/R(s) to be in the LH s plane (stable system) is that all coefficients in Eq.(13.81) must by positive. (Why?) So, constant terma0+ K G k1= K G c0
must be positive.
State feedback: steady-State Error Analysis3. Ramp input: r(t)=R1tu-2(t), R(s)=R1/s2 IF the input of the state-variable-feedback control system is ramp or parabolic, the error function E(s) must first determined. From the Eq.(13.76), the state-variable-feedback control system output isY ( s)= R( s) s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+ K G ( s w+ c w 1s w 1++ c1s+ c0 )+ (a0+ K G k1 )
Then the error function E(s) isE ( s)= R( s) s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+ s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2++ (a0+ K G k1 ) K G ( s w+ c w 1s w 1++ (a0+ K G k1 )+ c1s+ c0 )
(13.82)
k1= c0 E ( s)= R( s)
a0 KGs n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2++ (a1+ K G k 2 ) K G ( s w+ c w 1s w 1++ (a0+ K G k1 )+ c1s )
s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+
(13.83)8
State feedback: steady-State Error Analysis3. Ramp input: r(t)=R1tu-2(t), R(s)=R1/s2 For a ramp input, the steady-state error isR (s)= R1 s2
(Applying the final-value theorem)e(t ) ss= lim sE ( s )=s→0
a1+ K G k 2 K G c1 R1 K G c0
(13.84)
In order to obtain e(t)ss=0, it is necessary thate(t ) ss= lim sE ( s )=s→0
a1+ K G k 2 K G c1 R1= 0 K G c0
a1+ K G k 2 K G c1= 0a1 ) KG
For an all-pole plant c0=1 and c1=0; thus k2=-a1/KG, in that cases n+ (a n 1+ K G k n ) s n 1+ ( a n 2+ K G k n 1 ) s n 2+
k 2= c1 (
(13.85)
+ ( a1+ K G k 2 ) s+ ( a0+ K G k1 )= 0 (13.81)
=0
State feedback: steady-State Error Analysis3. Ramp input: r(t)=R1tu-2(t), R(s)=R1/s2 We can see, the coefficient of s in the system characteristic equation (13.81) is zero, and the system is unstable. Therefore, zero steady-state error for a ramp input cannot be achieved by state-variable-feedback for an all pole stable system.s n+ (a n 1+ K G k n ) s n 1+ ( a n 2+ K G k n 1 ) s n 2++ ( a1+ K G k 2 ) s+ ( a0+ K G k1 )= 0 (13.81)
If a1+ K G k 2> 0 in order to obtain a positive coefficient of s in the system characteristic equation (13.81), the system may be stable but a finite steady-state error exists. The error in an all-pole plant ise(t ) ss= lim sE ( s )=s→0
a1+ K G k 2 a R1= (k 2+ 1 ) R1 KG KG
State feedback: steady-State Error Analysis3. Ramp input: r(t)=R1tu-2(t), R(s)=R1/s2Y ( s)= R( s) s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+ K G ( s w+ c w 1s w 1++ c1s+ c0 )+ (a0+ K G k1 )
When a plant contain at least one zero, so that c1>0, it is possible to specify the valu
e of k2 given byEq.(13.85) and to have a stable system.k 2= c1 ( a1 ) KG
(13.85)
In that case, zero steady-state error with a ramp input can be achieved.s n+ (a n 1+ K G k n ) s n 1+ ( a n 2+ K G k n 1 ) s n 2++ ( a1+ K G k 2 ) s+ ( a0+ K G k1 )= 0 (13.81)K G c1> 0
Thus, a stable state-variable-feedback system having zero steady-state error with both a step and a ramp input can be achieved only when the control ratio has at least one zero.11
State feedback: steady-State Error Analysis4. Parabolic input: r(t)=(R2t2/2)u-3(t), R(s)=R2/s3 For a parabolic input, the all-pole and pole-zero plants are considered separately. For an all-pole plant, we haveE ( s)= R( s)
k1= c0
a0 KG
(13.80)+ c1s+ c0 )
=0 (13.82)
s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+
s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+
+ (a0+ K G k1 ) K G ( s w+ c w 1s w 1++ (a0+ K G k1 )
E (s)=
R2 s3
s n+ ( a n 1+ K G k n ) s n 1+ ( a n 2+ K G k n 1 ) s n 2+
s n+ ( a n 1+ K G k n ) s n 1+ ( a n 2+ K G k n 1 ) s n 2+
+ ( a1+ K G k 2 ) s+ ( a 0+ K G k1 )
e(t ) ss= lim sE ( s )=∞s→0
It is concluded that an all-pole plant cannot be follow a parabolic input.12
State feedback: steady-State Error Analysis4. Parabolic input: r(t)=(R2t2/2)u-3(t), R(s)=R2/s3 Under the condition that e(t)ss=0 for both step and ramp inputs to a polezero stable system (a plant containing at least one zero), we havek1= c0 a0 KG
(13.80)
k 2= c1 (
a1 ) KG
(13.85)+ c1s )++ (a0+ K G k1 )+ c2 s 2 )
E ( s)= R( s)
s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+ s+ (a n 1+ K G k n ) sn n 1
+ (a1+ K G k 2 ) K G ( s w+ c w 1s w 1+n 2
+ (a n 2+ K G k n 1 ) s
(13.83) (13.88)
E ( s)= R( s)
s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+
s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2+
+ (a 2+ K G k 3 ) K G ( s w+ c w 1s w 1++ (a0+ K G k1 )
e(t ) ss= lim sE ( s )=s→0
a2+ K G k3 K G c2 R2 K G c0
State feedback: steady-State Error Analysis4. Parabolic input: r(t)=(R2t2/2)u-3(t), R(s)=R2/s3 In order to obtain e(t)ss=0, it is necessary thate(t ) ss= lim sE ( s )=s→0
a2+ K G k 3 K G c2 R2= 0 K G c0
a2+ K G k 3 K G c2= 0a2 ) KG
k 3= c2 (
(13.90)
With this value of k3, the s2 term in Eq.(13.81) (system characteristic equation) has the positive coefficient KGc2 only when w>=2. Thus, a stable system having zero steady-state error with a parabolic input can be achieved, even if G(s) is Type 0, only for a pole-zero system with two or more zeros.
State feedback: steady-State Error Analysis4. Parabolic input: r(t)=(R2t2/2)u-3(t), R(s)=R2/s3 IN a system having only one ze
ro (w=1), the value c2=0 and k3=-a2/KG produces a zero coefficient for the s2 term in Eq.(13.81) (system characteristic equation), resulting in an unstable system. Therefor, zero steady-state error with a parabolic input cannot be achieved by a state-variable-feedback pole-zero stable system with one zero. If k3≠ -a2/KG and a2+KGk3>0 in order to maintain a positive coefficient of s2 term in Eq.(13.81), a finite error exists. The system can be stable, and the steady-state error ise(t ) ss= lim sE ( s )= (s→0
a2+ K G k3 ) R2 K G c0
(13.91)
State feedback: steady-State Error Analysis Brief review(1) In analysis steady-state error, consider the minimun-phase transfer function G(s) is K ( s w+ c s w 1++c s+c ) Y ( s)G ( s)= U (s)=G w 1 1 0
s+ an 1sn
n 1
+ an 2 s
n 2
+
+ a1s+ a0
where kG>0, w<n, and the coefficients ci are all positive. The state-variable-feedback control system ratio isK G ( s w+ c w 1s w 1++ c1s+ c0 ) Y (s)= R( s ) s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2++ (a0+ K G k1 )
(13.76)
For an all-pole plant,
G (s)=
K G c0 Y (s)= n U ( s ) s+ an 1s n 1+ a n 2 s n 2+
+ a1s+ a0
IF ci=0 (i>0), it is a pole-zero plant.16
State feedback: steady-State Error Analysis Brief review(2) For a step input, zero steady-state error can be achieved with statevariable-feedback, even if G(s) is Type 0, and the feedback coefficient k1 is determined by the plant parameters. For a ramp input, zero steady-state error cannot be achieved by statevariable-feedback for an all pole stable system. The system may be stable but a finite steady-state error exists. The zero steady-state error with a ramp input can be achieved only when the control ratio has at least one zero. For a parabolic input, the all-pole plant cannot be follow the input. The zero steady-state error can be achieved, only for a pole-zero system with two or more zeros.
State feedback: steady-State Error Analysis5. Use of steady-state coefficients For the example represented by Fig.13.7a in P437, the feedback coefficient blocks are manipulated to yield the Heq block diagram as R UX1= Y
GH eq
The system control ratio isM (s)= Y (s) G (s)= R ( s ) 1+ G ( s ) H eq ( s )
(13.92)
kX
Fig. 13.7d
Similar, a Geq unity-feedback block diagram can be obtained, and the system control ratio is.G eq ( s ) Y (s) M (s)== R ( s ) 1+ G eq ( s )
R
U
G eq
X1= Y
kX
(13.93)
Fig. 13.818
State feedback: steady-State Error Analysis5. Use of steady-state coefficients Solving for Geq from Eq.(13.93)G eq ( s ) Y (s) M (s)== R ( s ) 1+ G eq ( s )
Noted that Eq.(13.76)
G eq ( s )=
M (s) 1 M (s)
K G ( s w+ c w 1s w 1++ c1s+ c0 ) Y (s)∵ M (s)== R ( s ) s n+ (a n 1+ K G k n ) s n 1+ (a n 2+ K G k n 1 ) s n 2++ (a0+ K G k1 )K G (s w+ cw 1s w 1++ c1s+ c0 )
(13.76)
∴ G
eq (s)=
s n+ (an 1+ K G k n )s n 1+
+ (a1+ K G k 2 )s+ (a0+ K G k1 ) K G (s w+ cw 1s w 1+
+ c1s+ c0 )
(13.95) This is a Type 0 transfer function, the step-error coefficient isK p= lim Geq (s)=s→0
K G c0 a0+ K G k1 K G c0
k1= c0 (a0/ K G )
K p=∞ e(t ) ss= 0
with a step input.19
正在阅读:
7_6_状态反馈中的稳态误差分析09-01
剑桥雅思4阅读解析-Test4 - 图文04-27
100测评网中考数学:方案设计型专题复习(苏科版九年级)10-19
小学一年级必读书目06-18
安全规章制度考试06-16
失望作文600字07-06
2008.1.14收到:(薛吉冈改报批稿)铁路后张梁管道压浆技术条件03-25
年度费用预算表(模板)08-30
随机过程 方兆本1.3 收敛性09-02
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 稳态
- 误差
- 反馈
- 状态
- 分析
- 公司里各职位名称的英文缩写
- 2019-2020学年人教版小学数学五年级上册第二次月考试卷
- 土石坝安全监测技术规范SL60-94
- 2013高考一轮复习 必修4Module2 Traffic Jam
- 2016-2022年中国条码打印机行业运营态势及十三五竞争战略分析报告
- 2017-2013年中国位置服务行业多维分析研究报告(目录)
- 对外汉语 教案设计 买东西 原创
- 2010及2011年修订和颁布的工程建设安全技术标准
- 广联达2013算量软件操作步骤详解
- 新生儿黄疸_第五讲新生儿高胆红素血症的治疗_药物治疗
- 湖北省建筑安装工程费用定额2003
- 中华人民共和国政府和印度共和国政府关于在中印边境实际控制线地区保持和平与安宁的协定
- 天天象棋残局第八十八关 八十八局过关图文
- 大学图书管理系统测试计划书
- 2017-2022年中国新型电池市场评估及投资前景分析报告(目录)
- 高一英语定语从句练习及解析
- 工程图标注
- 中国联通WCDMA基站配套设备验收规范培训提纲
- 绿化工程投标书
- 经济学实践报告