三角形、勾股定理知识点 整理

更新时间:2023-03-20 19:57:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

全等三角形、勾股定理教案

②对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换;

③旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换;

同步训练:

1、如图,在四边形ABCD 中,AB=AD ,BC=DC ,E 为AC 边上的点,BE=DE.试判断:

⑴图中有哪些三角形全等?请说明理由。

⑵图中有哪些角相等?

2、如图1,AD ⊥BC ,D 为BC 的中点,则△ABD ≌___,△ABC 是___三角形。

3、如图2,若AB =DE ,BE =CF ,要证△ABF ≌△DEC ,需补充条件____或____。

4、如图3,已知AB ∥CD ,AD ∥BC ,E 、F 是BD 上两点,且BF =DE ,则图中共有___对全等三角形,它们分别是_____。

A B C D 1 A D B

C E F 图3 A B C

D O 图4 A D B C

E

F 图5 A D B E F C 2

5、如图4,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,则图中有___对全等三角形。

6、如图5,已知AB =DC ,AD =BC ,E 、F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF =____。

7、如图6,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =____。

8、在等腰△ABC 中,AB =AC =14cm ,E 为AB 中点,DE ⊥AB 于E ,交AC 于D ,若△BDC 的周长为24cm ,则底边BC =____。

9、若△ABC ≌△A ′B ′C ′,AD 和A ′D ′分别是对应边BC 和B ′C ′的高,则△ABD ≌△A ′B ′D ′,理由是______,从而AD =A ′D ′,这说明全等三角形____相等。

10、在Rt △ABC 中,∠C =90°,∠A 、∠B 的平分线相交于O ,则∠AOB =____。

知识点二:

1、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即:

要点诠释: A E B O F C 图6 A B C

D

图7

本文来源:https://www.bwwdw.com/article/13ne.html

Top