湖南省邵阳市2008年初中毕业学业考试试题卷

更新时间:2024-04-08 00:00:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

湖南省邵阳市2008年初中毕业学业考试试题卷

数 学

温馨提示:

(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分.

(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上. (3)请你在答题卡上作答,答在本试题卷上无效. ...

一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的.缜密思考,找准选项.) 1.?2的倒数是( ) A.

1 2

B.?1 2 C.2

D.?2

2.计算(?2x2)3的结果是( ) A.?8x

6

B.?6x

6

C.?8x

5

D.?6x

53.据《湖南日报》2008年5月25日讯,截至5月24日下午3时,湖南省赈灾募捐办公室统计,全省向四川地震灾区捐赠款物共计75137.13万元,请用科学记数法表示这个数,结果为(保留四位有效数字)( ) A.7.513?107元 C.0.7514?10元

98

B.7.514?10元 D.0.7513?10元

?984.如图(一),直角梯形ABCD中,AB∥DC,?A?90.将直角梯形ABCD绕边AD旋转一周,所得几何体的俯视图是( ) D C

A B

A.

B.

C.

D.

图(一)

5.若反比例函数y?

k

,?2),则这个函数的图象一定经过点( ) 的图象经过点(1x

A.(1,2)

B.(2,1)

C.(?1,2)

D.(?1,?2) A F

D

的点F处,则下

6.如图(二),将ABCD沿AE翻折,使点B恰好落在AD上列结论不一定成立的是( ) .....

?A.AF?EF B.AB?EF

B C.AE?AF D.AF?BE E C 7.“六·一”儿童节,某玩具超市设立了一个如图(三)所示的可以自由转动的

图(二)

转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:

100 150 200 500 800 1000 转动转盘的次数n

68 108 140 355 560 690 落在“铅笔”区域的次数m 落在“铅笔”区域的频率

m n0.68 0.72 0.70 0.71 0.70 0.69

下列说法不正确的是( ) ...

A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70 B.假如你去转动转盘一次,获得铅笔的概率大约是0.70

C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有D.转动转盘10次,一定有3次获得文具盒 8.如图(四),点P是AB上任意一点,?ABC??ABD,还应才能推出△APC≌△APD.从下列条件中补充一个条件,不一..

铅笔 文具盒 600次

转盘

图(三) C A

补充一个条件,定.能.推出

△AP≌△CAP ) 的是(

A.BC?BD B.AC?AD C.?ACB??ADB D.?CAB??DAB

B

P D

图(四)

二、填空题(本大题共有8小题,每小题3分,共24分.多动脑筋,认真填写.) 9.如图(五),数轴上表示的关于x的一元一次不等式组的解集为 .

-2 -1 0 1 2 3 4

图(五)

3210.分解因式:x?2x?x? .

11.某市6月2日至8日的每日最高温度如图(六)所示,则这组数据的中位数是 ,

众数是 .

最高温度(℃)

31 30 29

28 27 26

O 2 3 4 5 6 7 8 9 日期

图(六)

D

A C

图(七)

O E

图(八)

B

12.2008年奥运火炬于6月3日至5日在我省传递(传递路线为:岳阳—汩罗—长沙—湘潭—韶山).如图

?2),长沙市位置点的坐标为(0,?4),请帮助小(七),学生小华在地图上设定汩罗市位置点的坐标为(0,华确定韶山市位置点的坐标为 .

?13.如图(八),AB与CD相交于点O,OE?CD,?BOE?54,则?AOC? .

14.计算机把数据存储在磁盘上,磁盘上有一些同心圆转道.如图(九),现有一张半径为45毫米的磁盘,磁盘的最内磁道半径为r毫米,磁盘的最外圆周不是磁道,磁道上各磁道之间的宽度必须不小于0.3毫米,这张磁盘最多有 条磁道.

A

D 4.5mm C A

E r O

B B C

D

图(九) 图(十) 图(十一)

15.如图(十),AB,AC分别是?O的直径和弦,OD?AC于点D,连结BD、BC,AB?5,AC?4,则BD? . 16.如图(十一),已知△ABC中,AB?AC,AD平分?BAC,点E为AC的中点,请你写出一个正确的结论: .

三、解答题(本大题共有3小题,每小题6分,共18分.弄清算理,正确解答.) 17.计算:?22?|?3|?20080?4.

18.已知分式?1?1?x,及一组数据:?2,?1,1,2. ???2x?1x?1x?1??(1)从已知数据中随机选取一个数代替x,能使已知分式有意义的概率是多少?

(2)先将已知分式化简,再从已知数据中选取一个你喜欢的,且使已知分式有意义的数代替x求值.

19.学生在讨论命题:“如图(十二),梯形ABCD中,AD∥BC,?B??C,则AB?DC.”的证明方法时,提出了如下三种思路.

思路1:过一个顶点作另一腰的平行线,转化为等腰三角形和平行四边形; 思路2:过同一底边上的顶点作另一条底边的垂线,转化为直角三角形和矩形; 思路3:延长两腰相交于一点,转化为等腰三角形. 请你结合以上思路,用适当的方法证明该命题. D A

C B

图(十二)

四、应用题(本大题共有4小题,每小题8分,共32分.注意建模,学以致用.) 20.根据国务院“限塑令”,步步高超市自2008年6月1日起,停止免费提供一次性塑料购物袋.为了满足顾客需要,在5月1日之前该超市购进了尼龙、帆布、无纺布袋三种能重复使用的环保型袋子样品,从5月1日至5月7日在需要购物袋的顾客中进行了购买意向调查,并将调查结果绘制成了统计图,请你根据图(十三)中的信息完成下列各题:

人数

4500 购买 购买

尼龙袋 无纺布袋 45% 30%

购买 帆布袋

无纺布袋 帆布袋 尼龙袋 购买类型

(1)求该超市调查了多少名顾;

(2)计算扇形统计图中“购买帆布袋”部分所对应的圆心角的度数; (3)请你将条形统计图补充完整;

(4)请你给步步高超市提供一条订购这三类环保型袋子的合理化建议.

21.在四川汶川地震灾后重建中,某公司拟为灾区援建一所希望学校.公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建校工程的时间是乙工程队的1.5倍,甲、乙两队合作完成建校工程需要72天.

(1)甲、乙两队单独完成建校工程各需多少天?

(2)在施工过程中,该公司派一名技术人员在现场对施工质量进行全程监督,每天需要补助100元.若由甲工程队单独施工时平均每天的费用为0.8万元.现公司选择了乙工程队,要求其施工总费用不能超过甲工程队,则乙工程队单独施工时平均每天的费用最多为多少?

温馨提示:

总费用?平均每天的费用?天数?补助费

22.王师傅开车通过邵怀高速公路雪峰山隧道(全长约为7千米)时,所走路程y(千米)与时间x(分钟)之间的函数关系的图象如图(十四)所示.请结合图象,回答下列问题: (1)求王师傅开车通过雪峰山隧道的时间; (2)王师傅说:“我开车通过隧道时,有一段连续2分钟恰好走了1.8千米”.你说有可能吗?请说明理由. y (千米) 7

3.6

1.6

O 2 4 x (分钟)

图(十四)

23.如图(十五),AB、CD是竖立在公路两侧,且架设了跨过公路的高压电线的电杆,AB?CD?16米.现在点A处观测电杆CD的视角为1942?,视线AD与AB的夹角为59.以点B为坐标原点,向右的水平方

??向为x轴的正方向,建立平面直角坐标系.

(1)求电杆AB、CD之间的距离和点D的坐标;

(2)在今年年初的冰雪灾害中,高压电线由于结冰下垂近似成抛物线y?12x?bx(b为常数).在通电100情况,高压电线周围12米内为非安全区域.请问3.2米高的车辆从高压电线下方通过时,是否有危险,并说明理由.

温馨提示:

?b4ac?b2?2,抛物线y?ax?bx?c(a?0)的顶点坐标???.

?2a4a???≈0.20. tan78?42?≈5.00,tan31?≈0.60,tan1118

y B 59° 19?42? A 路面

图(十五)

五、规律探索题(本大题共10分.大胆实践,积极探索.)

D F x C 土丘 E

?24.如图(十六),正方形OA与OB1相交于AC1B1C1的边长为1,以O为圆心、OA1为半径作扇形OAC11,11点B2,设正方形OA1B1C1与扇形OAC11之间的阴影部分的面积为S1;然后以OB2为对角线作正方形、OA2为半径作扇形OA2C2,?OA2B2C2,又以O为圆心,A2C2与OB1相交于点B3,设正方形OA2B2C2与扇形OA2C2之间的阴影部分面积为S2;按此规律继续作下去,设正方形OAnBnCn与扇形OAnCn之间的阴影部分面积为Sn. (1)求S1,S2,S3; (2)写出S2008;

(3)试猜想Sn(用含n的代数式表示,n为正整数).

六、综合题(本大题共12分.反复尝试,收获成功.)

C1 C2 C3 S1 S2 B2 S3 B3 B1

O A3 A2 图(十六)

A1

??25.如图(十七),将含30角的直角三角板ABC(?B?30)绕其直角顶点A逆时针旋转?解

(0???90),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连结

??NC.设BC?4,BM?x,△MNC的面积为S△MNC,△ABC的面积为S△ABC.

(1)求证:△MNC是直角三角形;

(2)试求用x表示S△MNC的函数关系式,并写出x的取值范围; (3)以点N为圆心,NC为半径作?N,

①当直线AD与?N相切时,试探求S△MNC与S△ABC之间的关系; ②当S△MNC?

1S△ABC时,试判断直线AD与?N的位置关系,并说明理由. 4A

? B

M D 图(十七)

N E C 湖南省邵阳市2008年初中毕业学业考试

数学参考答案及评分标准

一、选择题(本大题共有8小题,每小题3分,共24分.)

1 2 3 4 5 题 号

B A B D C 答 案

二、填空题(本大题共有8小题,每小题3分,共24分.)

6

C 7 D 8 B

2,?5) 13.36? 9.?1?x≤3 10.x(x?1) 11.29,30 12.(?114.150?10r 15.13 16.答案不唯一.例如:?B??C 3三、解答题(本大题共有3小题,每小题6分,共18分.)

17. ?22?|?3|?20080?4.

??4?3?2 ·································································································· 4分 ??3. ········································································································ 6分

18.(1)当x??1或x?1时,分式?1?1?x无意义, ???2?x?1x?1?x?13; ········· 2分 5因此,从已知数据中随机抽取一个数代替x,能使已知分式有意义的概率为

(2)?1?1?x ???2x?1x?1x?1???x(x?1)?2x?1????(x?1) ??(x?1)(x?1)(x?1)(x?1)?x2?x?x?12??(x?1)··················································································· 4分 2x?1?x2?1. ···································································································· 5分

取x?0代入,得原式?1.(答案不唯一) ·························································· 6分 19.过点D作DE∥AB交BC于点E, ??B??DEC, ·························································································· 1分

??DEC??C, 又??B??C,?DE?DC. ······························································································ 3分 ?AD∥BC,AB∥DE,

······································································ 5分 ?四边形ABED为平行四边形, ·

?AB?DE, ?AB?DC.(答案不唯一) ··········································································· 6分 四、应用题(本大题共有4小题,每小题8分,共32分.) 20.(1)设步步高超市调查了x名顾客,则依题意得: 45%?x?4500,解得x?10000; ··································································· 2分 (2)购买帆布袋的顾客数所占比例为1?45%?30%?25%,

所以圆心角的度数为360?25%?90; ···························································· 4分 (3)购买尼龙袋的顾客数为10000?30%?3000,

人数 4500 3000 2500 ??无纺布袋 帆布袋 尼龙袋 购买类型 ············································· 6分 (4)答案不唯一.例如:步步高订购三种环保型袋子的比例为9:6:5. ··················· 8分 21.(1)设乙工程队单独完成建校工程需x天,则甲工程队单独完成建校工程需1.5x,依题意得:

111??. ···························································································· 3分 x1.5x72解得x?120,经检验x?120是原方程的解,1.5x?180,

所以甲需180天,乙需120天; ········································································ 4分 (2)甲工程队需总费用为0.8?180?0.01?180?145.8(万元), ·························· 5分 设乙工程队施工时平均每天的费用为m,则120m?120?0.01≤145.8, ················· 7分 解得m≤1.205,

所以乙工程队施工时平均每天的费用最多为1.205万元. ········································ 8分 22.(1)当x≥2时,设路程y与时间x之间的函数关系式为y?kx?b,依题意可得:

?1.6?2k?b,?k?1,解得? ?b??0.4,3.6?4k?b,??所以y?x?0.4, ·························································································· 3分 当y?7时,解得x?7.4,

即王师傅开车通过雪峰山隧道的时间为7.4分钟; ················································· 4分

(2)当0?x≤2时,王师傅开车的速度为0.8千米/分钟, 当x≥2时,王师傅开车的速度为1千米/分钟. ··················································· 6分 设王师傅开车从第t分钟开始连续2分钟恰好走了1.8千米,

则有0.8(2?t)?1?t?1.8,解得t?1,

即进隧道1分钟后,连续2分钟恰好走了1.8千米. ·············································· 8分

tan31, 23.(1)电杆AB、CD之间的距离为AE,在Rt△ADE中,DE?AE?tan1118?, ·在Rt△AEC中,CE?AE?··························································· 2分

????16,?AE?40, ·?AE?tan30??AE?tan1118············································· 3分

?tan31?24, 在Rt△ADE中,DE?AE?DF?DE?EF?DE?AB?24?16?8,即D点坐标为(40,························ 4分 8); ·

?121x?bx过点D(40,?402?40?b, 8)可得8?100100解得b??0.2, ····························································································· 6分

121211?x?0.2x?x?x?(x?10)2?1,其顶点坐标为(10,?1), ············ 7分 1001005100?电线离地面最近距离为15米, 又3.2?12?15.2?15,

·········································· 8分 ?3.2米高的车辆从高压电线下方通过时,会能危险. ·

(2)由y?五、规律探索题(本大题共10分.)

1?1?24.(1)S1?1??π?222142π; ···································································· 2分 4?2?1?2?1π······························································· 4分 S2????2???4?π??2???2?8; ·

?????22?1?22?1π·················································· 6分 S3????2?2???4?π??2?2???4?16; ·

????1π(2)S2008?2007?2009; ············································································· 8分

221π(3)Sn?n?1?n?1(n为正整数).····························································· 10分

2222

六、综合题(本大题共12分.)

AMAN?, ADAEAMAN??又?AD?AB,AE?AC,, ························································ 1分 ABAC?ABM∽△ACN, ·又??BAM??CAN,△··················································· 2分 ?25. (1)?MN∥DE,??B??NCA,??NCA??ACB??B??ACB?90?,

??MCN?90?,即△MNC是直角三角形; ······················································ 3分

(2)在Rt△ABC中,?A?90,?B?30,BC?4,

???AC?2,AB?23,

?△ABM∽△ACN,?BMAB?, CNAC?CN?MB?AC2x3··································································· 4分 ??x; ·

AB3231133······················ 5分 MC?CN?(4?x)?x?(4x?x2)(0?x?4); ·

2236?S△MNC?(3)①直线AD与?N相切时,则AN?NC.

?△ABM∽△ACN,

AMMB??,?AM?MB. ANNC??B?30?,????30?,??AMC?60?, ························································ 6分

又??ACB?90?30?60,

????△AMC是等边三角形,?MC?AM?BM?2,

?S△MNC?32(4x?x2)?3, 63

?S△MNC?又?S△ABC?23,②当S△MNC?1S△ABC; ····························································· 7分 31S△ABC时, 4则有31··········································· 8分 (4x?x2)??23,解之得x?1或x?3; ·

64NC2?MC2?221, 3(i)当x?1时,,

在Rt△MNC中,MC?4?x?3,?MN??AN?在Rt△AMN中,?AMN?30,?11MN?21, ··································· 9分 23?13,即AN?NC, 21?33·············································································· 10分 ?直线AD与?N相离; ·(ii)当x?3时,

同理可求出:NC?3,MC?1······································ 11分 ,MN?2,AN?1, ·

?NC?AN,

?直线AD与?N相交. 12分

本文来源:https://www.bwwdw.com/article/10rr.html

Top