圆周率的计算

更新时间:2024-03-20 16:00:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

圆周率的计算

摘要:古人计算圆周率,一般是用割圆法这种基于几何的算法计算量大,速度慢。由于数学知识的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。随着科技的发展计算机的应用使得人们在圆周率的计算中取得了很大的突破。 引言:圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。其实,即使是要求最高、最准确的计算,也用不着这么多的小数位,那么,为什么人们还要不断地努力去计算圆周率呢?

第一,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是由研究圆周率的推动,从而发展出来的。 第二,数学家把π算的那么长,是想研究π的小数是否有规律。

古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。

十九世纪之前古人用割圆法即用圆的内接或外切正多边形来逼近圆的周长来求圆周率由于工作量太大计算发展很缓慢。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值。

随着数学知识的发展,产生了用数学公式计算圆周率的方法,下面主要介绍几种经典公式。 1、

马青公式

π=16arctan1/5-4arctan1/239

这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 2、

拉马努金公式

1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫

斯基兄弟利用这个公式计算到了4,044,000,000位 3、 AGM(Arithmetic-Geometric Mean)算法

高斯-勒让德公式:

这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位

4、波尔文四次迭代式 这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表的。 5、bailey-borwein-plouffe算法

这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表

丘德诺夫斯基公式

它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性

6.丘德诺夫斯基公式

这是由丘德诺夫斯基兄弟发现的,十分适合计算机编程,是目前计算机使用较快的一个公式。

7.莱布尼茨公式

π/4=1-1/3+1/5-1/7+1/9-1/11+…… 8.PC机计算

目前PC机上流行的最快的圆周率计算程序是PiFast。它除了计算圆周率,还可以计算e和sqrt(2)。PiFast可以利用磁盘缓存,突破物理内存的限制进行超高精度的计算,最高计算位数可达240亿位,并提供基于Fabrice Bellard公式的验算功能。 最高记录为12,884,901,372位是Shigeru Kondo2000年10月10日缔造。

结论:圆周率的最新计算纪录由日本筑波大学所创造。他们于2009年算出π值2,576,980,370,000 位小数,这一结果打破了由日本人金田康正的队伍于2002年创造的1,241,100,000,000位小数的世界纪录。 法国软件工程师法布里斯-贝拉德计算到了小数点后27000亿位,从而成功打破了由日本科学家2009年利用超级计算机算出来的小数点后25779亿位的吉尼斯世界纪录。2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。

2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。今年56岁近藤茂使用的是自己组装的计算机,从去年10月起开始计算,花费约一年时间刷新了纪录。

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。在以后对于圆周率的计算过程中,我们相信还是会出现很多的更为简便的计算方法和更加精确的数字和位数。

本文来源:https://www.bwwdw.com/article/0zo8.html

Top