线性代数习题答案(复旦版周勇 - 朱砾)
更新时间:2023-11-13 08:27:01 阅读量: 教育文库 文档下载
- 复旦 线性代数推荐度:
- 相关推荐
线性代数习题及答案all in
习题一
1. 求下列各排列的逆序数.
(1) 341782659; (2) 987654321;
(3) n(n?1)…321; (4) 13…(2n?1)(2n)(2n?2)…2. 【解】
(1) τ(341782659)=11; (2) τ(987654321)=36;
n(n?1)(3) τ(n(n?1)…3·2·1)= 0+1+2 +…+(n?1)=;
2(4) τ(13…(2n?1)(2n)(2n?2)…2)=0+1+…+(n?1)+(n?1)+(n?2)+…+1+0=n(n?1).
2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.
5x1232的展开式中包含x3和x4的项. 3x1xx12x4. 本行列式D4?122x(i1i2i3i4)解: 设 D4?i1i2i3i4?(?1)?ai11ai22ai33ai44 ,其中i1,i2,i3,i4分别为不同列中对应
元素的行下标,则D4展开式中含x3项有
(?1)?(2134)?x?1?x?2x?(?1)?(4231)?x?x?x?3??2x3?(?3x3)??5x3
D4展开式中含x4项有
(?1)?(1234)?2x?x?x?2x?10x4.
5. 用定义计算下列各行列式.
0200123000100020(1); (2). 3000304500040001【解】(1) D=(?1)τ(2314)4!=24; (2) D=12.
6. 计算下列各行列式.
1
214?1?ac?ae(1)
3?12?1ab123?2; (2) ?bdcd?de; 506?2?bf?cf?efa?1001234(3)1b?102301c?1; (4) 413412. 001d4123506?2【解】(1) Dr1?r23?12?1123?2?0;
506?21?1?1(2) D?abcdef?11?1??4abcdef; ?1?1?1b?101?10(3)D?a1c?1?(?1)20c?1?a??bc?1?1?1?01d01d?1d0d??cd?1? ?abcd?ab?ad?cd?1;102341023410234cr(4)D1?c?2103412?r1011?3r3?2r11?3c10412r?2?2?2r?204?160.c1?c3r3?4?r200?41?c4?rr1010123410?1?1?1000?47. 证明下列各式.
a2abb2(1) 2aa?b2b?(a?b)2;
111a2(a?1)2(a?2)2(a?3)2(2)
b2(b?1)2(b?2)2(b?3)2c2(c?1)2(c?2)2(c?3)2?0;
d2(d?1)2(d?2)2(d?3)21a2a31aa2 (3) 1b2b3?(ab?bc?ca)1bb2 1c2c31cc2 2
a00b(4) D002n?ab0cd0?(ad?bc)n; c00d1?a111(5)
11?a21?n?1?n??1??a?i??ai. i?1i?1111?an【证明】(1)
c(a?b)(a?b)b(a?b)b2左端1?c3c?2(a?b)a?b2b2?c3001
?(a?b)(a?b)b(a?b)2(a?b)a?b?(a?b)2a?bb21?(a?b)3?右端.a22a?14a?46a?9a22a?126(2) c2-c左端1b22b?14b?46b?9c3-2c2b22b?126c?c3?c124?c1c2c?14c?46c?9c?4?3c2c22c?126?0?右端.d22d?14d?46d?9d22d?126(3) 首先考虑4阶范德蒙行列式:
1xx2x3f(x)?1aa2a31bb2b3?(x?a)(x?b)(x?c)(a?b)(a?c)(b?c)(*)1cc2c3从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为
1aa2(ab?bc?ac)(a?b)(a?c)(b?c)?(ab?bc?ac)1bb2,
1cc2但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故
1a2a3(?1)1?11b2b3, 1c2c3(4) 对D2n按第一行展开,得
3
aabD2n?ac0据此递推下去,可得
b00aab?bcd0cc0bcdd0
d00d?ad?D2(n?1)?bc?D2(n?1)?(ad?bc)D2(n?1),D2n?(ad?bc)D2(n?1)?(ad?bc)2D2(n?2)??(ad?bc)n?1D2?(ad?bc)n?1(ad?bc) ?(ad?bc)n?D2n?(ad?bc)n.
(5) 对行列式的阶数n用数学归纳法.
当n=2时,可直接验算结论成立,假定对这样的n?1阶行列式结论成立,进而证明阶数为n时结论也成立.
按Dn的最后一列,把Dn拆成两个n阶行列式相加:
1?a1111?a21?a1a21an?1?anDn?1.1111111?a11?11111?an?110an11?a21100Dn?
但由归纳假设
Dn?1?a1a2从而有
?n?11an?1?1???i?1ai??, ?Dn?a1a2?a1a28. 计算下列n阶行列式.
?n?11?an?1?ana1a2an?1?1????i?1ai?
nnn1??1??an?1an?1?????1????ai.?i?1ai??i?1ai?i?1 4
x111x(1) Dn?1x12 (2) Dn?222222232222; n11200x000000021121111xx0(3)Dn?yx000y0000. (4)Dn?aij其中aij?i?j(i,j?1,2, ,n) ;
0yyx210121012000000(5)Dn?.
【解】(1) 各行都加到第一行,再从第一行提出x+(n?1),得
1x11Dn?[x?(n?1)],
将第一行乘(?1)后分别加到其余各行,得
1Dn?[x?(n?1)]110x?1?(x?n?1)(x?1)n?1.
1x?100122210001010r3?r11002 r2?r1rn?r12000n?2(2)
Dn?按第二行展开1000222010?002000
200n?25
??2(n?2)!.
(3) 行列式按第一列展开后,得
x0Dn?x0yyx000y000000?y(?1)n?1x0yxyx000yx000y0000000xy
?x?x(n?1)?y?(?1)(n?1)?y(n?1)?xn?(?1)n?1yn.(4)由题意,知
Dn?a11aa21aan11222ananann01101210n?1n?2n?3 0?1?1?1?1自第三行起后一行减去前一行12?2an2n?1n?2n?3011111112?111n?2n?1?1?1?111?1?1后一行减去前一行
000012002000n?2n?1?1002?100020按第n-1列展开(?1)n?1(n?1)0200002?(?1)n?1(n?1)2n?2.
1?1?11220按第一列展开??0200n?2n?1002000
6
210002000001000121001210012100(5) D01200n??01200?01200
000210002100021000120001200012?2Dn?1?Dn?2.
即有 Dn?Dn?1?Dn?1?Dn?2??D2?D11 ?由 ?Dn?Dn?1???Dn?1?Dn??2???D2??D1?1n ?得
Dn?D1?n?1, Dn?n?1??2n?. 19. 计算n阶行列式.
1?a1a2anD1?a2ann?a1
a1a21?ann【解】各列都加到第一列,再从第一列提出1??ai,得
i?11a2a3an11?a2aanD??n??1??a?3ni??1a21?a3an, i?11a2a31?an将第一行乘(?1)后加到其余各行,得
1a2a3ann100nD???0n??1??ai010?1??ai.
i?1??0i?1000110. 计算n阶行列式(其中ai?0,i?1,2,,n).
7
a1n?1a1n?2b1Dn?a1b1n?2b1n?1n?1a2n?2a2b2n?1a3n?2a3b3n?1ann?2anbn.
n?2a2b2n?1b2a3b3n?2b3n?1n?2anbnn?1bn?1【解】行列式的各列提取因子an,2,j(j?1,n),然后应用范德蒙行列式.
1b3a321b1a1Dn?(a1a2an)n?1?b1??a??1??b1??a??1??(a1a211. 已知4阶行列式
n?121b2a2?b2??a??2??b2??a??2?1bnan2?b3??a??3??b3??a??3??bn??a??n??bn??a??n?2
n?1n?1n?1n?1?bibj?an)????.aj?1?j?i?n?ai1234D4?3344;
15671122试求A41?A42与A43?A44,其中A4j为行列式D4的第4行第j个元素的代数余子式. 【解】
234134A41?A42?(?1)4?1344?(?1)4?2344?3?9?12.
567167同理A43?A44??15?6??9. 12. 用克莱姆法则解方程组.
?5x1?6x2 ?1,? x1? x2? x3 ?5,? x?5x?6x ?0,123?2x? x? x? x?1,???1234(1) ? (2) ? x2?5x3?6x4 ?0,
x?2x? x? x?2,234? x?5x?6x?0,?1345??? x2?2x3?3x4?3.?? x4?5x5?1.【解】方程组的系数行列式为
8
111011101?31D?21?110?1?31?1?31?12?11?01?21?1?21?0?52?18?0; 012301231230?1451101510D11?111?22?11?18;D?21?11212?11?36;3123032311501115
D21111?13?1221?36;D214?12?12??18.01330123故原方程组有惟一解,为
xD?D2?2,xDD41?1D?1,x2D3?3D?2,x4?D??1.
2)D?665,D1?1507,D2??1145,D3?703,D4??395,D5?212.?x
1?1507665,x22937792122??133,x3?35,x4??133,x5?665.13. λ和μ为何值时,齐次方程组
???x1?x2?x3?0,?x1??x2?x3?0, ??x1?2?x2?x3?0有非零解?
【解】要使该齐次方程组有非零解只需其系数行列式
?111?1?0, 12?1即
?(1??)?0.
故??0或??1时,方程组有非零解. 14. 问:齐次线性方程组
??x1?x2?x3?ax4?0,??x1?2x2?x3?x4?0,x ?1?x2?3x3?x4?0,??x1?x2?ax3?bx4?0
9
有非零解时,a,b必须满足什么条件?
【解】该齐次线性方程组有非零解,a,b需满足
111a1211?0,
11?3111ab即(a+1)2=4b.
15. 求三次多项式f(x)?a0?a1x?a2x2?a3x3,使得
f(?1)?0,f(1)?4,f(2)?3,f(3)?16.
【解】根据题意,得
f(?1)?a0?a1?a2?a3?0;f(1)?a0?a1?a2?a3?4;f(2)?a0?2a1?4a2?8a3?3;f(3)?a0?3a1?9a2?27a3?16.
这是关于四个未知数a0,a1,a2,a3的一个线性方程组,由于
D?48,D0?336,D1?0,D2??240,D3?96.
故得a0?7,a1?0,a2??5,a3?2 于是所求的多项式为
f(x)?7?5x2?2x3
16. 求出使一平面上三个点(x1,y1),(x2,y2),(x3,y3)位于同一直线上的充分必要条件.
【解】设平面上的直线方程为
ax+by+c=0 (a,b不同时为0)
按题设有
?ax1?by1?c?0,??ax2?by2?c?0, ?ax?by?c?0,3?3则以a,b,c为未知数的三元齐次线性方程组有非零解的充分必要条件为
x1x2x3y11y21?0 y31上式即为三点(x1,y1),(x2,y2),(x3,y3)位于同一直线上的充分必要条件.
10
习题 二
1. 计算下列矩阵的乘积.
?1???1?(1)=???32?10?; (2)
?2????3??3??2?(3) ?1234???; (4)
?1????0??500??1??031???2?; ??????021????3???a11x3???a21??a31a12a22a320?x1?1?0??0??0x2a13??x1??x?;a23???2? a33????x3??3?a11(5) ??a21??a31a12a22a32a13??100??011?; (6) a23????a33????001??210??1?0101???021??0??003??01?12?1??. 0?23??00?3?【解】
?32?1??3?21(1) ??64?2??96?30??5?0??; (2)??3?; (3) (10);
??0???1????0?33(4)
ax?ax?ax?(a12?a21)x1x2?(a13?a31)x1x3?(a23?a32)x2x3???aijxixj
211122222333i?1j?1?a11(5)??a21??a31a12a22a32?1a12?a13??0?a22?a23?; (6) ??0a32?a33????02?12?4??. 0?43??00?9?25?111??121??,B??13?1?, ?1112. 设A?????????1?11???214??求(1)AB?2A;(2) AB?BA;(3) (A+B)(A?B)?A2?B2吗?
?242??440?【解】(1) AB?2A??400?; (2) AB?BA??5?3?1?;
???????024????31?1??(3) 由于AB≠BA,故(A+B)(A?B)≠A2?B2.
11
3. 举例说明下列命题是错误的.
(1) 若A2?O, 则A?O; (2) 若A2?A, 则A?O或A?E; (3) 若AX=AY,A?O, 则X=Y. 【解】
??001?(1) 以三阶矩阵为例,取A??000?,A2?0,但A≠0
?000?????1?10?(2) 令A???000?,则A2=A,但A≠0且A≠E
?001?????110??2??1?(3) 令A???011??0,Y=?1?,X??2?
????????101????1????0??则AX=AY,但X≠Y.
?1??4. 设A?????, 求A2,A3,…,Ak. ??01???【解】A2???12???,A3???13???,,Ak???1k???01??01??01??. ??10?5. A=??0?1?, 求A2,A3并证明: ???00??????kk?k?1k(k?1)k?2Ak=?2????0?kk?k?1???.
?00?k????22?1???33?23??【解】A2=??0?22????,A3=??0?33?2?. ?00?2?????00?3??今归纳假设
???kk?k?1k(k?1)Ak=?2?k?2???0?kk?k?1???
?00?k??
12
那么
Ak?1?AkAk(k?1)k?2??kk?1?k?????10??2??0?1? =?kk?1??k??0??k?00????0??0?????k?1(k?1)?kk(k?1)k?1????2???0?k?1(k?1)?k?,???00?k?1??所以,对于一切自然数k,都有
?kk?k?1k(k?1)k?k=??A?2?2???0?kk?k?1???.
?00?k??6. 已知AP=PB,其中
?100?B=??000??100?,P=?2?10? ???1??00?1????21??求A及A5.
【解】因为|P|= ?1≠0,故由AP=PB,得
?100?A?PBP?1???200?, ?1?1??6???而
A5?(PBP?1)5?P(B)5P?1?100??100??100???2?10????10000??2?10???20????1??????211????00????411????6?1??abcd?7. 设A=?b?ad?c????cda?b??,求|A|. ??d?cba??解:由已知条件,A的伴随矩阵为
0?0??A.?1??? 13
?a??2222?bA=?(a?b?c?d)??c???dbd?ccab?add??c????(a2?b2?c2?d2)A ?b??a?又因为A?A=AE,所以有
?(a2?b2?c2?d2)A2=AE,且A?0,
2即 ?(a2?b2?c2?d)A2=(a2?b2?c2?d)2A4A=A E4于是有 A??(a2?b2?c2?d2)4??(a2?b2?c2?d2)2. 8. 已知线性变换
x1?2y1?y2,??y1??3z1?z2,???x2??2y1?3y2?2y3,?y2?2z1?z3, ?x?4y?y?5y;?y??z?3z,12323?3?3利用矩阵乘法求从z1,z2,z3到x1,x2,x3的线性变换. 【解】已知
?x1??2????2X??x2?????4?x3????y1???3???2Y??y2?????0?y3???10??y1??y??AY,32???2?15????y3??10??z1??z??Bz, 01???2??13????z3????421?X?AY?ABz?12?49?z,?????10?116??从而由z1,z2,z3到x1,x2,x3的线性变换为
?x1??4z1?2z2?z3,??x2?12z1?4z2?9z3, ?x??10z?z?16z.123?39. 设A,B为n阶方阵,且A为对称阵,证明:B?AB也是对称阵.
【证明】因为n阶方阵A为对称阵,即A′=A,
所以 (B′AB)′=B′A′B=B′AB, 故B?AB也为对称阵.
10. 设A,B为n阶对称方阵,证明:AB为对称阵的充分必要条件是AB=BA. 【证明】已知A′=A,B′=B,若AB是对称阵,即(AB)′=AB.
14
则 AB=(AB)′=B′A′=BA, 反之,因AB=BA,则
(AB)′=B′A′=BA=AB,
所以,AB为对称阵.
11. A为n阶对称矩阵,B为n阶反对称矩阵,证明: (1) B2是对称矩阵.
(2) AB?BA是对称矩阵,AB+BA是反对称矩阵. 【证明】
因A′=A,B′= ?B,故
(B2)′=B′·B′= ?B·(?B)=B2;
(AB?BA)′=(AB)′?(BA)′=B′A′?A′B′
= ?BA?A·(?B)=AB?BA;
(AB+BA)′=(AB)′+(BA)′=B′A′+A′B′
= ?BA+A·(?B)= ?(AB+BA).
所以B2是对称矩阵,AB?BA是对称矩阵,AB+BA是反对称矩阵.
12. 求与A=??11?01可交换的全体二阶矩阵. ???【解】设与A可交换的方阵为??ab??cd??,则由 ??11??????ab??ab??11?01?cd??=??cd????01??, 得
??a?cb?d??d?????aa?b?c?cc?d??. 由对应元素相等得c=0,d=a,即与A可交换的方阵为一切形如??a?0其中a,b为任意数.
?100?13. 求与A=??012?可交换的全体三阶矩阵.
?01?2????【解】由于
??000?A=E+?002?,
??3??01??而且由
b?a?的方阵,?15
?1??2??1???2???3???2???????(2) ξ1=?0?,ξ2=?2?,ξ3=?1?.
??????35?????2??????1????3????2??【解】
??2??3?(1) ξ1=?1?ξ2=?0?设齐次线性方程组为Ax=0
???????0???1??由?1,?2为Ax=0的基础解系,可知
??2??3??x1??x1???2k1?3k2????x???? x?k1?1??k2?0???xk221?????????????k2?0???1??????x3????x3???令 k1=x2 , k2=x3
?Ax=0即为x1+2x2?3x3=0.
?121???2?3?2???(2) A(?1?2?3)=0?A的行向量为方程组为(x1x2x3x4x5)?021??0的解.
??352?????1?3?2??x1?2x2?3x4?x5?0??即?2x1?3x2?2x3?5x4?3x5?0的解为 ?x?2x?x?2x?2x?02345?1?1?203?1??1?203?1?r3?r1?2?325?3?????012?1?1? ?r?2r??21?????1?212?2???001?1?1??得基础解系为?1=(?5 ?1 1 1 0)T ?2=(?1 ?1 1 0 1)T
??5?1110?A=? ???1?1101?方程为
??5x1?x2?x3?x4?0, ??x?x?x?x?0.?123511. 设向量组?1=(1,0,2,3),?2=(1,1,3,5),?3=(1,?1,a+2,1),
46
?4=(1,2,4,a+8),?=(1,1,b+3,5)
问:(1) a,b为何值时,?不能由?1,?2,?3,?4线性表出? (2) a,b为何值时,?可由?1,?2,?3, ?4惟一地线性表出?并写出该表出式.
(3) a,b为何值时,?可由?1,?2,?3,?4线性表出,且该表出不惟一?并写出该表出式. 【解】
??x1?1?x2?2?x3?3?x4?4 (*)
?1?0A?(Ab)???2??3?1?0??0??0111?13a?2511121?1?r3?2r1?????r4?3r1?b?3?1a?85?111??1?0?121?r3?r2??????r4?2r2?0a2b?1????2a?52??01241111?120a?1000a?11?1??b??0?
(1) ?不能由?1,?2,?3,?4线性表出?方程组(*)无解,即a+1=0,且b≠0.即a=?1,且b≠0.
(2) ?可由?1,?2,?3,?4惟一地线性表出?方程组(*)有惟一解,即a+1≠0,即a≠?1.
(*) 等价于方程组
?x1?x2?x3?x4?1?x?x?2x?1?234??(a?1)x3?b??(a?1)x4?0bba?b?1
?x4?0x3?x2?x3?1??1?a?1a?1a?1b2b?b?x1?1???0???1??a?1?a?1?a?12ba?b?1b?????1??2??3a?1a?1a?1(3) ?可由?1,?2,?3,?4线性表出,且表出不惟一?方程组(*)有无数解,
47
即有
a+1=0,b=0?a=?1,b=0.
?x1?k2?2k1方程组(*)???x?1?1?x2?x3?x4?x2?k1?2k2?1?x2?x3?2x?? 4?1?x3?k1??x4?k2k1,k2,k3,k4为常数.
∴??(k2?2k1)?1?(k1?2k2?1)?2?k1?3?k2?4
??x1?x2?a1x?x?12. 证明:线性方程组??23a25?x?3?x4?a3有解的充要条件是?ai?0.
i?1?x4?x5?a4??x5?x1?a5【解】
??1?1000a1?01?1a?2A??00??001?10a?????r2?r31??0001?1a?4????10001a5????1?1000a1??01?100a?2??001?10a?r3?5?r2?0001?1a?????4???0?1001a1?a5????1?1000a1??01?100a?2??001?10a?3?????0001?1a?4???00?101a1?a2?a5????1?1000a1??01?100a?2?0a??01?103?
?0001?1a?4???5??00001a?i?i?1?方程组有解的充要条件,即R(A)=4=R(A)
48
??ai?0得证.
i?15ξ1,ξ2,13. 设?*是非齐次线性方程组Ax=b的一个解,,ξn?r是对应的齐次线性方
程组的一个基础解系.证明
(1)?*,ξ1,,ξn?r线性无关;
(2)?*,?*+ξ1,,?*+ξn?r线性无关.
【 证明】 (1) ?*,ξ1,,ξn?r线性无关? k?*?k1ξ1??kn?rξn?r?0成立,
当且仅当ki=0(i=1,2,…,n?r),k=0
A(k?*?k1ξ1??kn?rξn?r)?0?kA?*?k
1Aξ1??kn?rAξn?r?0∵ξ1,ξ2,,ξn?r为Ax=0的基础解系
?A?i?0(i?1,2,,n?r)
?kA?*?0由于A?*?b?0
?k?b?0?k?0.. 由于ξ1,ξ2,,ξn?r为线性无关 k1ξ1?ξ2?k2??kn?r?ξn?r?0?ki?0(i?1,2,,n?r)∴?*,ξ1,ξ2,,ξn?1线性无关.
(2) 证?*,?*+ξ1,,?*+ξn?r线性无关.
?k?*?k*1(??ξ1)??kn?r(?*?ξn?r)?0成立
当且仅当ki=0(i=1,2,…,n?r),且k=0
k?*?k1(?*?ξ1)??k*n?r(??ξn?r)?0
即
(k?k1??kn?r)?*?k1ξ1??kn?rξn?r?0
由(1)可知,?*,ξ1,,ξn?1线性无关.
49
即有ki=0(i=1,2,…,n?r),且
k?k?k?0?k?0
1n?r∴?*,?*+ξ1,,?*+ξn?r线性无关.
14. 设有下列线性方程组(Ⅰ)和(Ⅱ)
?(Ⅰ)?x1?x2?2x4??6??4x?x1?mx2?x3?x4??51?x2?x3?x4?1 (Ⅱ) ?nx2?x3?2x4??11
??3x1?x2?x3?3??x3?2x4?1?t(1) 求方程组(Ⅰ)的通解;
(2) 当方程组(Ⅱ)中的参数m,n,t为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换
??110?2?6??10?2?6???110?2?6??4?1?1?11??1?0?5?1725????00?125??3?1?103????0?4?1621????0?1?4??01??? ?100?1?2??010?1?4???001?2?5???由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组
??x1?x4?0?x2?x4?0 ??x3?2x4?0得方程组(*)的基础解系
??1????1?1??2??
?1?????2?令x ????4?4?0,得方程组(Ⅰ)的特解 ????5?
?0??于是方程组(Ⅰ)的通解为x???k?,k为任意常数。
(2) 方程组(Ⅱ)的增广矩阵为
??1m?1?1?5??0n??44m?3n0012?t??1?2?11??01?21?t??0n0?4?10?t? ?0????001?21?t???
*)50
(
(1)A=???1????, 证明 2?Ak=???k1?????k?,f(A)??f(?1)2??f(?; 2)??(2) 设A=P?1BP, 证明Bk=PAkP?1,f(B)?Pf(A)P?1. 【证明】
2???2(1)A?10?,A3??0??0?2???31?3?即k=2和k=3时,结论成立. 2??02?今假设
k???kA?10??0?k?, 2?那么
k?1Ak?1?AkA=???k10???10???1?0?k?????0?k?, 2??0?1?2??0?2?所以,对一切自然数k,都有
Ak????k10??0?k?, 2?而
f(A)?a0E+a1A++amAm?a?1???1?0??1???a1???++a??m1??m?2???m?2??a0?a1?1++am??m?10??0a++am?0?a1?2m?2????f(?1)??f(??.2)?(2) 由(1)与A=P ?1BP,得
B=PAP ?1.
且
Bk=( PAP ?1)k= PAkP ?1,
又
f(B)?a0E?a1B??amBm?a0E?a?11PAP??a1mPAmP??P(a0E?a1A+?am?1
mA)P?Pf(A)P?1.
21
?ab?2x?(a?d)x?ad?bc?0. 24. A=?,证明矩阵满足方程??cd?【证明】将A代入式子x2?(a?d)x?ad?bc得
A2?(a?d)A?(ad?bc)E?ab??ab??10????(a?d)?(ad?bc)??cd??01??cd?????0? ?a2?bcab?bd??a2?adab?bd??ad?bc??????2?2?ad?bc???ac?cdcb?d??ac?cdad?d??0?00?????0.00??故A满足方程x2?(a?d)x?ad?bc?0. 25. 设n阶方阵A的伴随矩阵为A?,
证明:(1) 若|A|=0,则|A?|=0;
(2) A??An?1.
【证明】(1) 若|A|=0,则必有|A*|=0,因若| A*|≠0,则有A*( A*)?1=E,由此又得
A=AE=AA*( A*)?1=|A|( A*)?1=0,
这与| A*|≠0是矛盾的,故当|A| =0,则必有| A*|=0. (2) 由A A*=|A|E,两边取行列式,得
|A|| A*|=|A|n,
若|A|≠0,则| A*|=|A|n?1 若|A|=0,由(1)知也有
| A*|=|A|n?1.
26. 设
?5?2A=??0??0200??3?4100??,B???0073???052??0200?500??. 041??062?2求(1) AB; (2)BA; (3) A?1;(4)|A|k (k为正整数). 【解】
?232000??19800??10900??301300??; (2) BA=??; (1)AB=??004613??003314?????00329005222????
22
0??1?20??250?0?1?; (4)Ak?(?1)k. (3) A=??00?23????005?7?27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.
?12000??003?1??25000??0021????; (1)?00300?; (2)???00010????00001????20102?2013?(3)?0??00100???00010?.
???00001??【解】(1) 对A做如下分块 其中
A?11???2A1,A2的逆矩阵分别为
A?1???51??2所以A可逆,且
?1???A?1A1?同理(2)
??2100???2300?? A???A10??0A? 2?2??300?5??;A2???010?,
?01??0????2?A?1?1??;300?1?2???010?, ???001????5?2000??2000???11?A?1????0000??.
2??3?00010????00001??23
?A?1???A2A1?????1???A1?1??0??0?1A2???????1?5?2???5120015353814001???8?1?4? ?.0???0??(3)
?1?2??0?1 A???0??0??0012000?0?12010??1??3??2?. 0??0??1?0100
习题 三
1. 略.见教材习题参考答案. 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 略.见教材习题参考答案.
5.?1??1??2,?2??2??3,?3??3??4,?4??4??1,证明向量组?1,?2,?3,?4线性相关.
【证明】因为
?1??2??3??4?2(?1??2??3??4)??1??2??3??4?2(?1??3) ??1??2??3??4?0所以向量组?1,?2,?3,?4线性相关.
6. 设向量组?1,?2,里?i??1??2???i.
,?r线性相关,则存在不全为零的数k1,k2,,kr,使
24
,?r线性无关,证明向量组?1,?2,,?r也线性无关,这
【证明】 设向量组?1,?2,
得
k1?1?k2?2??kr?r?0.
把?i??1??2???i代入上式,得
?kr)?1?(k2?k3??kr)?2??kr?r?0.
(k1?k2?又已知?1,?2,,?r线性无关,故
?k1?k2??kr?0,?k??k?0,?2r ? ??kr?0.?该方程组只有惟一零解k1?k2?线性无关.
7. 略.见教材习题参考答案. 8. ?i?(?i1,?i2,关.
【证明】已知A?aij?0,故R(A)=n,而A是由n个n维向量?i?(?i1,?i2,i?1,2,,n组成的,所以?1,?2,,?n线性无关.
,tin?1),i?1,2,,r是线性
?kr?0,这与题设矛盾,故向量组?1,?2,,?r,?in),i?1,2,,n.证明:如果aij?0,那么?1,?2,,?n线性无
,?in),
9. 设t1,t2,,tr,是互不相同的数,r≤n.证明:?i?(1,ti,无关的.
【证明】任取n?r个数tr+1,…,tn使t1,…,tr,tr+1,…,tn互不相同,于是n阶范德蒙行列式
11t1trt12tr22r?1t1n?1trn?1tn?1r?11tr?1t1tn?0,
2tnn?1tn从而其n个行向量线性无关,由此知其部分行向量?1,?2,10. 设?1,?2,,?s的秩为r且其中每个向量都可经?1,?2,,?s的一个极大线性无关组.
,?r也线性无关.
,?r线性表出.证明:
?1,?2,,?r为?1,?2, 25
A?(?1,?2,?1,?2)?1?1???0??0120??112?0?1?30?11????13?1??000??13?1??0000? 1??,0??0?由此知向量组?1,?2与向量组?1,?2的秩都是2,并且向量组?1,?2可由向量组
?1,?2线性表出.由习题15知这两向量组等价,从而?1,?2也可由?1,?2线性表出.所以
L(?1,?2)?L(?1,?2).
26. 在R3中求一个向量?,使它在下面两个基
(1)?1?(1,0,1),?2?(?1,0,0)?3?(0,1,1)(2)?1?(0,?1,1),?2?(1,?1,0)?3?(1,0,1)下有相同的坐标.
【解】设?在两组基下的坐标均为(x1,x2,x3),即
?x1??x1???(?,?,?)?x?,??(?1,?2,?3)?x2123?2??????x3???x3??
?1?10??x1??011??x1??001??x????1?10??x????2????2???101????101????x3????x3??即
?1?2?1??x1??111??x??0, ???2???000????x3??求该齐次线性方程组得通解
x1?k,x2?2k,x3??3k (k为任意实数)
故
??x1?1?x2?2?x3?3?(k,2k,?3k).
27. 验证?1?(1,?1,0),?2?(2,1,3),?3?(3,1,2)为R3的一个基,并把?1?(5,0,7),
?2?(?9,?8,?13)用这个基线性表示.
31
【解】设
A?(?1,?2,?3),B?(?1,?2),
又设
?1?x11?1?x21?2?x31?3,?2?x12?1?x22?2?x32?3,
即
?x11x12?(??1,?2)?(?1,?2,?3)??x21x22??, ?x31x32??记作 B=AX.
则
?1235?9??1235?9?(AB)????1110?8????r2?r145?17??13?????03????r2?r3r2?r3??0327????0327?13????1235?9??10023??0327?13??????作初等行变换??0103?3??2?2?4????00???001?1?2???因有A?E,故?1,?32,?3为R的一个基,且
?23?(?1,?2)?(?1,?2,?3)??3?3???2?,
??1??即
?1?2?1?3?2??3,?2?3?1?3?2?2?3.
习题四
1. 用消元法解下列方程组.
??x1?4x2?2x3?3x4?6,?x1?2x2?2x3?2,(1) ??2x1?2x2?4x4?2, (2) ??3x?2x1?5x2?2x3?4,
1?2x2?2x3?3x4?1,???xx?2x?4x?6;1?2x2?3x?1233?3x4?8;【解】(1)
32
??1(Ab)??2??3?1??1?0??0?0??1?0??0?0??1?0??0?0得
所以
(2)
解②?①×2得 ③?① 得 得同解方程组
4?236???236?2042?r?1?14211021?22?31?????2??322?31?rr4?r12?r1????r3?3r2?23?38????123?38??4?236??32?1?5?(?1)?r2?r3?12?9?2????????25?62??4?236??4?236?1?292??101?292?r4?r?32?1?5?????r3?3r2r4?2r2???00?4261?????3??25?62????001126??4?236??1?236?1?292??4r01?292?01126?????4?4r3???001126??,0?4261????0007425????x1?4x2?2x3?3x4?6?? x2?2x3?9x4?2 ? x3?12x4?6?? 74x4?25??x1??187,?74??x2?211?74, ?x?144?3,?74??x254?74.??x1?2x2?2x3?2① ?2x1?5x2?2x3?4 ?② ?x1?2x2?4x3?6③ x2?2x3=0 2x3=4 ??x1?2x2?2x3?2④ ? x2?2x3?0 ?? 2x3?433
⑤ ⑥ 由⑥得 x3=2, 由⑤得 x2=2x3=4,
由④得 x1=2?2x3 ?2x2 = ?10, 得 (x1,x2,x3)T=(?10,4,2)T. 2. 求下列齐次线性方程组的基础解系.
? x?1?3x2?2x? x1? x2?5x3? x4?0,(1) ?3?0,? x1?5x2? x3?0, (2)
??? x1? x2?2x3?3x4?0,?3x1?5x2?8x3?0;?3x1? x2?8x3? x4?0,?? x1?3x2?9x3?7x4?0;?(3) ? x1? x2?2x3?2x4?7x5?0,?2x1?3x2?4x3?5x4 ?0,
??3x1?5x2?6x3?8x4 ?0;?? x1?2x2?2x3?2x4? x5?0,? x1?2x2? x3?3x4?2x5?0, ??2x1?4x2?7x3? x4? x5?0.【解】(1)
??x1?3x2?2x3?0,?x1?5x2?x3?0, ??3x1?5x2?8x3?0.?132??132??132?A??r?151????2?r1??02?1????r3?2r2??02?1? ?358?r3?3r1?????????0?42????000??得同解方程组
?x??2x?3x??7x3??x3x?1322,1?2?2x3?0??2x??2?x3?0?x2?1x3, ?2?x3?x3,得基础解系为
?T?71???221??. (2) 系数矩阵为
(4)
34
??1?15?1??1?1A??11?23???181??5?1?????r2?r1r??02?74?????r3?r2??3r3?3r14?r?02?74?r4?2r2?13?97?1???04?148????1?15?1?
?02?74???0000??r(A)?2.?0000??∴ 其基础解系含有4?R(A)?2个解向量.
?x1??3??x3?x??3?4??x??2????2?????1??x?5x02?1?x23?x4??2x???????7???2x3?2x4???x?7??2?3?x42?7x3?4x4?0?x3??2???0????x?x4???3??x?????1?????14????0??基础解系为
???3??2???7???1???2???,?2???. ?1??0????1???0?? (3)
?11227??11227?A???23450????r2?2r1??0101?14???35680?r3?3r1????02?21??02???11227?
???r3?2r2???0101?14???00007???得同解方程组
??x1?x2?2x3?2x4?7x5?0,?x2?x4?14x5?0, ??7x5?0?x5?0.取??x3?????1??,??0??得基础解系为 ?x4??0??1?
35
(?2,0,1,0,0)T,(?1,?1,0,1,0).
(4) 方程的系数矩阵为
?12?22?1???12?22?1?A???12?13?2???r2?r1??0011?1???24?71?r3?2r11??????00?3?33???12?22?1?
???r3?3r2???0011?1?R(A)?2,??00000???∴ 基础解系所含解向量为n?R(A)=5?2=3个
?x2??取??x??x2??4为自由未知量 ????0??1???0?x?4?0?,?0?x5??????x5???1?,?1?, ??????????0???0????3???2????4?得基础解系 ?0?????1???1?,?0????0?,??0?????1 .???0??1??1????0?????0??3. 解下列非齐次线性方程组.
??x1?x2?2x3?1,(1) ??2x1?x2?2x3?4,?2x1?x2?x3?x4?1, (2) ??4x1?2x2?2x3?x4?2,?x1?2x2?3,???4x?2x1?x2?x3?x4?1;1?x2?4x3?2;?x?2x?x?x?1,?x1?x2?x3?x4?x5?7,(3) ?1234??x?x?3x1?2x2?x3?x4?3x5??2,?1?2x23?x4??1, (4) ??x?2x?x?x?5;?x2?2x3?2x4?6x5?23,1234??5x1?4x2?3x3?3x4?x5?12.【解】
(1) 方程组的增广矩阵为
??1121??121?(Ab)??2?124??1r?2r0?3?22???1?203?????21rr3?r1??4?4r1?0?3?22?????r3?r2r4?r2??4142????0?3?4?2????1121??121?
?0?3?22??1r?14?r30?3?22???0000??????2???0012???00?2?4????0000??
36
得同解方程组
x?2,???x1?x2?2x3?1?3??3x?2x?2?2?2x3?23??x2??x?3??2, 3?2???x1?1?x2?2x3??1.(2) 方程组的增广矩阵为
?21?111??21?111?(Ab)??r3?r?42?212?????1?r2?2r1?000?10? ??11????21?1???000?20??得同解方程组
??2x1?x2?x3?x4?1,??x?4?0,?x4?0 ??2x4?0,即
??2x1?x2?x3?1,?x 4?0.令x1?x3?0得非齐次线性方程组的特解
xT=(0,1,0,0)T.
又分别取
??x2??1?????0?x???0??,??1?? 3得其导出组的基础解系为
T????1?1;??1?T??2,1,0,0??2???2,0,1,0??,
∴ 方程组的解为
??0????1??1?2??x??1????k???2??k1,k2?R
?0?1?1???k2?0?.?0?0??1?????0??????0????1?2111??1?2(3) ??1?21?1?1?111????r2?r1r?r??000?2?2??1?2115?31???????00004??R(A)?R(A)∴ 方程组无解.
37
(4) 方程组的增广矩阵为
?1?3(Ab)???0??5?1?0r3?r2?????r4?r2?0??0分别令
11117?7??11111?0?1?2?2?6?23?211?3?2?r3?3r1???????r4?5r1?0122623?122623????433?112?0?1?2?2?6?23??
11117??1?2?2?6?23??,00000??00000??x3??0??1??0??x???0?,?0?,?1? ?4?????????1????0????0???x5????x?x?x?x?x?0得其导出组?12345的解为
?x?2x?2x?6x?0345?2?5??1??1???6???2???2???????k1?0??k2?1??k3?0???????00?????1?????1???0???0??令x3?x4?x5?0,
得非齐次线性方程组的特解为:xT=(?16,23,0,0,0)T,
∴ 方程组的解为
??16??5??1??1??23???6???2???2?????????x??0??k1?0??k2?1??k3?0? ????????000???????1??????0???1???0???0??其中k1,k2,k3为任意常数.
4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及
对其它车间的消耗如下表所示. 车间 出厂产量 总产量 1 2 3 消耗系数 (万元) (万元) 车间 1 0.1 0.2 0.45 22 x1
38
k1,k2,k3?R.
2 0.2 0.2 0.3 0 x2 3 0.5 0 0.12 55.6 x3 表中第一列消耗系数0.1,0.2,0.5表示第一车间生产1万元的产品需分别消耗第一,二,三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.
解:根据表中数据列方程组有
??x1? 0.1x1?0.2x2? 0.45x3?22,?x2? 0.2x1?0.2x2?0.3x3?0, ??x3?0.5x1?0.12x3?55.6,?0.9x1?0.2x2? 0.45x即 ?3?22,? 0.2x?1?0.8x2?0.3x3?0,
?0.5x1?0.88x3??55.6,?x1?100解之 ?,?x?2?70,
?x3?120;5. ?取何值时,方程组
???x1?x2?x3?1,?x1??x2?x3??, ??x1?x2??x3??2,(1)有惟一解,(2)无解,(3)有无穷多解,并求解.
【解】方程组的系数矩阵和增广矩阵为
???11??A??1?1??;??111?B???1?1??,
?11?????11??2???|A|=(??1)2(??2).
(1) 当?≠1且?≠?2时,|A|≠0,R(A)=R(B)=3.
∴ 方程组有惟一解
???11(??1)2x1???2,x2???2,x3?(??2).
(2) 当?=?2时,
???2111??1?21?2?B??1?21?2??24????r2?r1??r???2111?????3?r1r2?2r1???11???11?24????1?21?2??
?0?33?3??1?21?2??0??03?36????33?3??,???0003??
39
R(A)≠R(B),∴ 方程组无解. (3) 当?=1时
?1111??1111?r2?r1?0000? B??1111???????r3?r1?????1111???0000??R(A)=R(B)<3,方程组有无穷解.
得同解方程组
x??x?x?1,??123?x2?x2, ??x3?x3.∴ 得通解为
??x1???1???1??1??x?2?k?1??k?0???0?, k,k?R.
??1??x3????2??12?0???????1???0??6. 齐次方程组
???x?y?z?0,?x??y?z?0, ??2x?y?z?0当?取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为
???11?A??1??1?
?2?11????|A|=(??4)(??1)
当|A|=0即?=4或?=?1时,方程组有非零解.
(i) 当?=4时,
?411??14?1??14?1?A???14?1????r2?r1??411????r2?4r1?r??0?155?????2?11????2?11?32r1?????0?93????1??14?1????r1?142?5?r10?1????r3?r2??0?31?3?3?3??0?31??????000???得同解方程组
40
?1???3??x1????x1?4x2?x3?0????x?k?1?.k?R ??3x?x?0??2?23???x??3??3????1?(ii) 当?=?1时,
??111??1?1?1??1?1?1?r2?r1r2?r1?000? A??1?1?1???????111?????????r3?2r1??????2?11???2?11???013??得
?x1??2x3,?x1?x2?x3?0???x2??3x3, ??x2?3x3?0?x?x3?3∴ (x1,x2,x3)T=k·(?2,?3,1)T.k∈R
7. 当a,b取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求
出其解.
?x1?2x2?3x3?x4?1?x1?x2?x3?x4?0?x?x?2x?3x?1?x?2x?2x?1?12?34234(1) ? (2) ?
?3x1?x2?x3?2x4?a??x2?(a?3)x3?2x4?b???2x1?3x2?x3?bx4??6?3x1?2x2?x3?ax4??1【解】方程组的增广矩阵为 (1)
?12?11(Ab)???3?1??23?12?0?1??00??003?123?1?2?13?1?3?6??1?r2?r1?0r3?3r1??????r4?2r1??0??b?6??0?11??1?040???????0?27a?3???b?2?8??011a23?1?1?7?101?0?r3?7r2?????a?3?r4?r2??1?7b?2?8?
23?11??1?140??.0?3?27a?3??00b?52?2a?2??141(i) 当b≠?52时,方程组有惟一解
a4(a?1)a?326(a?1)?,x2??,3b?523b?52
a?318(a?1)2(a?1)x3???,x4??.3b?52b?52x1? 41
(ii) 当b=?52,a≠?1时,方程组无解.
(iii) 当b=?52,a=?1时,方程组有无穷解. 得同解方程组
?x1?2x2?3x3?x4?1???x2?x3?4x4?0 (*) ???3x3?27x4??4?x1?2x2?3x3?x其导出组?4?0??x2?x3?4x4?0的解为
???3x3?27x4?0??x1?2x4,??x?13x?x1??2??24?x??x3??9x4,???x?x????k?13?2?.k?R 34?x4.?x????9??4??1?非齐次线性方程组(*)的特解为
?5??x??1??3?取x
x?35?4=1, ?2??????3?. ?x3????x???234????3??1??∴ 原方程组的解为
??5??3??35????2?13?x???3??k??k?R
??9??.??23??????3?1??1?? (2)
42
110??11?01?221(Ab)???????r3?r2r4?3r1??0?1(a?3)?2b??321a?1????11110??01221?r4?r2??00a?10b?1?????? ?0?1?2a?3?1????11110??01221???00a?10b?1??.?000a?10??(i) 当a?1≠0时,R(A)=R(A)=4,方程组有惟一解.
?b?a?2??x??a?1?1???x?a?2b?3?2??????a?1?x?. 3??b??x???1?4???a?1??0??(ii) 当a?1=0时,b≠?1时,方程组R(A)=2 (iii) 当a=1,b= ?1时,方程组有无穷解. 得同解方程组 ??x1?x2?x3?x4?0,?x 2?2x3?2x4?1.取 ??x1?x3?x4?1,??x2??2x3?2x4?1, ?x3?x3,??x4?x4,∴ 得方程组的解为 43 ??x1??1??1???1??x??2?2???2??1??x??k1?1???k2??0??????.k1,k2?R ?3???x??4??0????1???0??0???112?8. 设A???224?,求一秩为2的3阶方阵B使AB=0. ???336??【解】设B=(b1 b2 b3),其中bi(i=1,2,3)为列向量, 由 AB?0?A(b1b2b3)?0?Abi?0(i?1,2,3) ?b1b2b3为Ax=0的解. ?112?求??224?????x1??x?2?=0的解.由 ?336????x3???112??112?A??r?224????2?2r1??000? ?6?r3?3r1????33???000??得同解方程组 ??x1??x2?2x3,?x?2?x2, ?x3?x3,∴ 其解为 ??x1???1???2??x??k?1??k?0?2.k1,k2?R ??1??x3????2???0????1??取 ???1?????2??0?b1?1;b2??0?????;b3???0?, ?0????1?????0??则 ??1?20?B???100??? ?010?? 44 9.已知?1,?2,?3是三元非齐次线性方程组Ax=b的解,且R(A)=1及 ?1????1??1?1??2???0??,?2??3???1??,?1??3??1?, ?0?????0?????1??求方程组Ax=b的通解. 【解】Ax=b为三元非齐次线性方程组 R(A)=1?Ax=0的基础解系中含有3?R(A)=3?1=2个解向量. ?1?1??0?????13?(?1??2)?(?2???3)??0?1???1?,?????0????0???1?1? ?)?(???0?1??2?(?1??32??3)???1?1??0?,?1?0????????1??由?1,?2,?3为Ax=b的解??1??3,?1??2为Ax=0的解, 且(?1??3),(?1??2)线性无关??1??3,?1??2为Ax=0的基础解系. 又 ?1?12?(?1??2)?(?2??3)?(?1??3)??1??1???1???1?1??1?1??2? 20?1??1????0??,???0??2????0??2????1????1??2??∴ 方程组Ax=b的解为 x??1?k1(?1??3)?k2(?1??2)??1?2???0????0????0???k1?1?k20?.k 1,k2?R??????1???0????1???2??10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成. ???2????3?(1) ξ1=1,ξ2=?0????; ?0?????1?? 45 【证明】若 ?1,?2,线性相关,且不妨设 ,?r (1) ?1,?2,,?t (t ,?s的一个极大无关组,这与 ,?s的一个极 是(1)的一个极大无关组,则显然(2)是?1,?2,?1,?2,,?s的秩为r矛盾,故?1,?2,,?r必线性无关且为?1,?2,大无关组. 11. 求向量组?1=(1,1,1,k),?2=(1,1,k,1),?3=(1,2,1,1)的秩和一个极大无关组. 【解】把?1,?2,?3按列排成矩阵A,并对其施行初等变换. ?1?1A???1??k11??111??111??11?0??0??0k?112?0101?????????k1??0k?10??0k?10??00??????11??01?k1?k??001?k??001?0?? 1??0?当k=1时,?1,?2,?3的秩为2,?1,?3为其一极大无关组. 当k≠1时,?1,?2,?3线性无关,秩为3,极大无关组为其本身. ,b,,)使向量组?1?(1,1,0),?2?(1,1,1),?3与向量组12. 确定向量?3?(2a?1=(0,1,1), ?2=(1,2,1),?3=(1,0,?1)的秩相同,且?3可由?1,?2,?3线性表出. 【解】由于 ?0A?(?1,?2,?3)??1???1?1B?(?1,?2,?3)??1???01211111??1??00????1????02??1??0a???b????00?;?1?1??00?? 12?,1b??0a?2??2而R(A)=2,要使R(A)=R(B)=2,需a?2=0,即a=2,又 a??0112??120?, c?(?1,?2,?3,?3)??120a???0112??????11?1b????000b?a?2?? 26 要使?3可由?1,?2,?3线性表出,需b?a+2=0,故a=2,b=0时满足题设要求,即 ?3=(2,2,0). 13. 设?1,?2,,?n为一组n维向量.证明:?1,?2,,?n线性无关的充要条件是任 一n维向量都可经它们线性表出. 【证明】充分性: 设任意n维向量都可由?1,?2,,?n线性表示,则单位向量 ?1,?2,,?n,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以 ,?n的秩为n,因此线性无关. ,?n线性无关,任取一个n维向量?,则?1,?2,,?n线性表示. ,?n线性 向量组?1,?2,必要性:设?1,?2,相关,所以?能由?1,?2,14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价. ?100???3,且向量组(1,0,0)110证明:由已知条件,R?,(1,1,0),(1,????111??1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且 R(?1,?2,?3)?3, 又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表 出,即两向量组等价,且 R(?1,?2,?3,?4)?3, 所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价. 15. 略.见教材习题参考答案. 16. 设向量组?1,?2,线性表出.证明?1,?2,【解】设向量组 ,?m与?1,?2,,?m与?1,?2,,?s秩相同且?1,?2,,?s等价. ,?m能经?1,?2,,?s?1,?2,与向量组 ,?m (1) ?1,?2,,?s (2) 27 的极大线性无关组分别为 ?1,?2,和 ,?r (3) ?1,?2,,?r (4) 由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即 ?i??aij?jj?1r(i?1,2,,r). 因(4)线性无关,故(3)线性无关的充分必要条件是|aij|≠0,可由(*)解出 ?j(j?1,2,,r),即(4)可由(3)线性表出,从而它们等价,再由它们分别同 (1),(2)等价,所以(1)和(2)等价. 17. 设A为m×n矩阵,B为s×n矩阵.证明: ?A?max{R(A),R(B)}?R???R(A)?R(B). ?B??A?【证明】因A,B的列数相同,故A,B的行向量有相同的维数,矩阵??可视为由 ?B??A?矩阵A扩充行向量而成,故A中任一行向量均可由??中的行向量线性表示, ?B?故 ?A?R(A)?R?? ?B?同理 ?A?R(B)?R?? ?B?故有 ?A?max{R(A),R(B)}?R?? ?B?又设R(A)=r,?i1,?i2,,?ir是A的行向量组的极大线性无关组,R(B)=k, ?j1,?j2,?A?,?jk是B的行向量组的极大线性无关组.设?是??中的任一行向量, ?B?,?ir表示,若?属于B的行向量组, 则若?属于A的行向量组,则?可由?i1,?i2, 28 则它可由?j1,?j2,?A?,?jk线性表示,故??中任一行向量均可由 ?B?,?jk线性表示,故 ?i1,?i2,,?ir,?j1,?j2,?A?R???r?k?R(A)?R(B), ?B?所以有 ?A?max{R(A),R(B)}?R???R(A)?R(B). ?B?18. 设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵.证明:B=KA行无关的充分必要条件是R(K)=r. 【证明】设 A=(As,Ps×(n?s)), 因为A为行无关的s×n矩阵,故s阶方阵As可逆. (?)当B=KA行无关时,B为r×n矩阵. r=R(B)=R(KA)≤R(K), 又K为r×s矩阵R(K)≤r,∴ R(K)=r. (?)当r=R(K)时,即K行无关, 由B=KA=K(As,Ps×(n?s))=(KAs,KPs×(n?s)) 知R(B)=r,即B行无关. 19. 略.见教材习题参考答案. 20. 求下列矩阵的行向量组的一个极大线性无关组. ?25?75(1)??75??2543??1?09453132??; (2)??29454134???322048??13117121?215?1??. 03?13??104?1?2??1????【解】(1) 矩阵的行向量组?2?的一个极大无关组为?1,?2,?3; ??3?????4???1????(2) 矩阵的行向量组?2?的一个极大无关组为?1,?2,?4. ??3?????4?21. 略.见教材习题参考答案. 22. 集合V1={(x1,x2,向量空间?为什么? 29 ,xn)|x1,x2,,xn∈R且x1?x2??xn=0}是否构成 【解】 2由(0,0,…,0 1)∈ V1 知 ,V1 )非空 ,,设 ??(x1x,x,n?V,??1)yy,yn?(2Vk,?R)则, ????(x1?y1,x2?y2,,xn?yn) k??(kx1,kx2,,kxn).因为 (x1?y1)?(x2?y2)??(x1?x2?kx1?kx2??(xn?yn)?yn)?0, ?xn)?0,?xn)?(y1?y2??kxn?k(x1?x2?所以????V1,k??V1,故V1是向量空间. 23. 试证:由?1?(1,1,0),?2?(1,0,1),?3?(0,1,1),生成的向量空间恰为R3. 【证明】把?1,?2,?3排成矩阵A=(?1,?2,?3),则 110A?101??2?0, 011所以?1,?2,?3线性无关,故?1,?2,?3是R3的一个基,因而?1,?2,?3生成的向量空间恰为R3. ?4?(1,1,2,1)所生的向量空24. 求由向量?1?(1,2,1,0),?2?(1,1,1,2),?3?(3,4,3,4),间的一组基及其维数. 【解】因为矩阵 A?(?1,?2,?3,?4,?5)?1?2???1??01112343411214??11314??11314??0?1?2?1?3??0?1?2?1?3? 5????????,6??00012??00012??????4??02414??00000?∴?1,?2,?4是一组基,其维数是3维的. 25. 设?1?(1,1,0,0),?2?(1,0,1,1),?1?(2,?1,3,3),?2?(0,1,?1,?1),证明: L(?1,?2)?L(?1,?2). 【解】因为矩阵 30
正在阅读:
线性代数习题答案(复旦版周勇 - 朱砾)11-13
第1章 人口的变化试题(含答案)06-11
中证指数成分股名单03-23
中国食品企业社会责任分析研究报告2018年修订版 - 图文12-30
最新精彩婚礼主持词范文08-24
第三章 汇款托收方 式(1)11-06
我国中小型企业内部控制问题研究12-06
核心词汇180005-31
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 周勇
- 复旦
- 线性代数
- 习题
- 答案
- 朱砾)
- 运用Visual C#完成基本数字图像处理
- 编译原理10套试卷及答案
- 六年级数学分数四则混合运算练习题(1)
- 文书发展
- 沪教版初中数学中考总复习(知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)
- 换热器原理与设计(答案)
- 2013年高职院校单独招生告家长书
- 《大学英语精读》(预备级)教学大纲
- 五病调离制度及消毒记录本
- 2017美国留学招生趋势大解读揭秘提升被名校录取几率的捷径
- 对联和碑文
- 建筑施工现场常用机械设备用电功率表
- 达克罗技术
- 采油地质工中级理论知识题-答案(1)
- 鄂教版一下品德
- 农村建房预防地质灾害知识
- TD-SCDMA试题
- 管道工习题及答案
- 抚顺市地表水环境功能区划 - 图文
- 对外经贸大学 国际金融作业及考试重点