线性代数习题答案(复旦版周勇 - 朱砾)

更新时间:2023-11-13 08:27:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

线性代数习题及答案all in

习题一

1. 求下列各排列的逆序数.

(1) 341782659; (2) 987654321;

(3) n(n?1)…321; (4) 13…(2n?1)(2n)(2n?2)…2. 【解】

(1) τ(341782659)=11; (2) τ(987654321)=36;

n(n?1)(3) τ(n(n?1)…3·2·1)= 0+1+2 +…+(n?1)=;

2(4) τ(13…(2n?1)(2n)(2n?2)…2)=0+1+…+(n?1)+(n?1)+(n?2)+…+1+0=n(n?1).

2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.

5x1232的展开式中包含x3和x4的项. 3x1xx12x4. 本行列式D4?122x(i1i2i3i4)解: 设 D4?i1i2i3i4?(?1)?ai11ai22ai33ai44 ,其中i1,i2,i3,i4分别为不同列中对应

元素的行下标,则D4展开式中含x3项有

(?1)?(2134)?x?1?x?2x?(?1)?(4231)?x?x?x?3??2x3?(?3x3)??5x3

D4展开式中含x4项有

(?1)?(1234)?2x?x?x?2x?10x4.

5. 用定义计算下列各行列式.

0200123000100020(1); (2). 3000304500040001【解】(1) D=(?1)τ(2314)4!=24; (2) D=12.

6. 计算下列各行列式.

1

214?1?ac?ae(1)

3?12?1ab123?2; (2) ?bdcd?de; 506?2?bf?cf?efa?1001234(3)1b?102301c?1; (4) 413412. 001d4123506?2【解】(1) Dr1?r23?12?1123?2?0;

506?21?1?1(2) D?abcdef?11?1??4abcdef; ?1?1?1b?101?10(3)D?a1c?1?(?1)20c?1?a??bc?1?1?1?01d01d?1d0d??cd?1? ?abcd?ab?ad?cd?1;102341023410234cr(4)D1?c?2103412?r1011?3r3?2r11?3c10412r?2?2?2r?204?160.c1?c3r3?4?r200?41?c4?rr1010123410?1?1?1000?47. 证明下列各式.

a2abb2(1) 2aa?b2b?(a?b)2;

111a2(a?1)2(a?2)2(a?3)2(2)

b2(b?1)2(b?2)2(b?3)2c2(c?1)2(c?2)2(c?3)2?0;

d2(d?1)2(d?2)2(d?3)21a2a31aa2 (3) 1b2b3?(ab?bc?ca)1bb2 1c2c31cc2 2

a00b(4) D002n?ab0cd0?(ad?bc)n; c00d1?a111(5)

11?a21?n?1?n??1??a?i??ai. i?1i?1111?an【证明】(1)

c(a?b)(a?b)b(a?b)b2左端1?c3c?2(a?b)a?b2b2?c3001

?(a?b)(a?b)b(a?b)2(a?b)a?b?(a?b)2a?bb21?(a?b)3?右端.a22a?14a?46a?9a22a?126(2) c2-c左端1b22b?14b?46b?9c3-2c2b22b?126c?c3?c124?c1c2c?14c?46c?9c?4?3c2c22c?126?0?右端.d22d?14d?46d?9d22d?126(3) 首先考虑4阶范德蒙行列式:

1xx2x3f(x)?1aa2a31bb2b3?(x?a)(x?b)(x?c)(a?b)(a?c)(b?c)(*)1cc2c3从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为

1aa2(ab?bc?ac)(a?b)(a?c)(b?c)?(ab?bc?ac)1bb2,

1cc2但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故

1a2a3(?1)1?11b2b3, 1c2c3(4) 对D2n按第一行展开,得

3

aabD2n?ac0据此递推下去,可得

b00aab?bcd0cc0bcdd0

d00d?ad?D2(n?1)?bc?D2(n?1)?(ad?bc)D2(n?1),D2n?(ad?bc)D2(n?1)?(ad?bc)2D2(n?2)??(ad?bc)n?1D2?(ad?bc)n?1(ad?bc) ?(ad?bc)n?D2n?(ad?bc)n.

(5) 对行列式的阶数n用数学归纳法.

当n=2时,可直接验算结论成立,假定对这样的n?1阶行列式结论成立,进而证明阶数为n时结论也成立.

按Dn的最后一列,把Dn拆成两个n阶行列式相加:

1?a1111?a21?a1a21an?1?anDn?1.1111111?a11?11111?an?110an11?a21100Dn?

但由归纳假设

Dn?1?a1a2从而有

?n?11an?1?1???i?1ai??, ?Dn?a1a2?a1a28. 计算下列n阶行列式.

?n?11?an?1?ana1a2an?1?1????i?1ai?

nnn1??1??an?1an?1?????1????ai.?i?1ai??i?1ai?i?1 4

x111x(1) Dn?1x12 (2) Dn?222222232222; n11200x000000021121111xx0(3)Dn?yx000y0000. (4)Dn?aij其中aij?i?j(i,j?1,2, ,n) ;

0yyx210121012000000(5)Dn?.

【解】(1) 各行都加到第一行,再从第一行提出x+(n?1),得

1x11Dn?[x?(n?1)],

将第一行乘(?1)后分别加到其余各行,得

1Dn?[x?(n?1)]110x?1?(x?n?1)(x?1)n?1.

1x?100122210001010r3?r11002 r2?r1rn?r12000n?2(2)

Dn?按第二行展开1000222010?002000

200n?25

??2(n?2)!.

(3) 行列式按第一列展开后,得

x0Dn?x0yyx000y000000?y(?1)n?1x0yxyx000yx000y0000000xy

?x?x(n?1)?y?(?1)(n?1)?y(n?1)?xn?(?1)n?1yn.(4)由题意,知

Dn?a11aa21aan11222ananann01101210n?1n?2n?3 0?1?1?1?1自第三行起后一行减去前一行12?2an2n?1n?2n?3011111112?111n?2n?1?1?1?111?1?1后一行减去前一行

000012002000n?2n?1?1002?100020按第n-1列展开(?1)n?1(n?1)0200002?(?1)n?1(n?1)2n?2.

1?1?11220按第一列展开??0200n?2n?1002000

6

210002000001000121001210012100(5) D01200n??01200?01200

000210002100021000120001200012?2Dn?1?Dn?2.

即有 Dn?Dn?1?Dn?1?Dn?2??D2?D11 ?由 ?Dn?Dn?1???Dn?1?Dn??2???D2??D1?1n ?得

Dn?D1?n?1, Dn?n?1??2n?. 19. 计算n阶行列式.

1?a1a2anD1?a2ann?a1

a1a21?ann【解】各列都加到第一列,再从第一列提出1??ai,得

i?11a2a3an11?a2aanD??n??1??a?3ni??1a21?a3an, i?11a2a31?an将第一行乘(?1)后加到其余各行,得

1a2a3ann100nD???0n??1??ai010?1??ai.

i?1??0i?1000110. 计算n阶行列式(其中ai?0,i?1,2,,n).

7

a1n?1a1n?2b1Dn?a1b1n?2b1n?1n?1a2n?2a2b2n?1a3n?2a3b3n?1ann?2anbn.

n?2a2b2n?1b2a3b3n?2b3n?1n?2anbnn?1bn?1【解】行列式的各列提取因子an,2,j(j?1,n),然后应用范德蒙行列式.

1b3a321b1a1Dn?(a1a2an)n?1?b1??a??1??b1??a??1??(a1a211. 已知4阶行列式

n?121b2a2?b2??a??2??b2??a??2?1bnan2?b3??a??3??b3??a??3??bn??a??n??bn??a??n?2

n?1n?1n?1n?1?bibj?an)????.aj?1?j?i?n?ai1234D4?3344;

15671122试求A41?A42与A43?A44,其中A4j为行列式D4的第4行第j个元素的代数余子式. 【解】

234134A41?A42?(?1)4?1344?(?1)4?2344?3?9?12.

567167同理A43?A44??15?6??9. 12. 用克莱姆法则解方程组.

?5x1?6x2 ?1,? x1? x2? x3 ?5,? x?5x?6x ?0,123?2x? x? x? x?1,???1234(1) ? (2) ? x2?5x3?6x4 ?0,

x?2x? x? x?2,234? x?5x?6x?0,?1345??? x2?2x3?3x4?3.?? x4?5x5?1.【解】方程组的系数行列式为

8

111011101?31D?21?110?1?31?1?31?12?11?01?21?1?21?0?52?18?0; 012301231230?1451101510D11?111?22?11?18;D?21?11212?11?36;3123032311501115

D21111?13?1221?36;D214?12?12??18.01330123故原方程组有惟一解,为

xD?D2?2,xDD41?1D?1,x2D3?3D?2,x4?D??1.

2)D?665,D1?1507,D2??1145,D3?703,D4??395,D5?212.?x

1?1507665,x22937792122??133,x3?35,x4??133,x5?665.13. λ和μ为何值时,齐次方程组

???x1?x2?x3?0,?x1??x2?x3?0, ??x1?2?x2?x3?0有非零解?

【解】要使该齐次方程组有非零解只需其系数行列式

?111?1?0, 12?1即

?(1??)?0.

故??0或??1时,方程组有非零解. 14. 问:齐次线性方程组

??x1?x2?x3?ax4?0,??x1?2x2?x3?x4?0,x ?1?x2?3x3?x4?0,??x1?x2?ax3?bx4?0

9

有非零解时,a,b必须满足什么条件?

【解】该齐次线性方程组有非零解,a,b需满足

111a1211?0,

11?3111ab即(a+1)2=4b.

15. 求三次多项式f(x)?a0?a1x?a2x2?a3x3,使得

f(?1)?0,f(1)?4,f(2)?3,f(3)?16.

【解】根据题意,得

f(?1)?a0?a1?a2?a3?0;f(1)?a0?a1?a2?a3?4;f(2)?a0?2a1?4a2?8a3?3;f(3)?a0?3a1?9a2?27a3?16.

这是关于四个未知数a0,a1,a2,a3的一个线性方程组,由于

D?48,D0?336,D1?0,D2??240,D3?96.

故得a0?7,a1?0,a2??5,a3?2 于是所求的多项式为

f(x)?7?5x2?2x3

16. 求出使一平面上三个点(x1,y1),(x2,y2),(x3,y3)位于同一直线上的充分必要条件.

【解】设平面上的直线方程为

ax+by+c=0 (a,b不同时为0)

按题设有

?ax1?by1?c?0,??ax2?by2?c?0, ?ax?by?c?0,3?3则以a,b,c为未知数的三元齐次线性方程组有非零解的充分必要条件为

x1x2x3y11y21?0 y31上式即为三点(x1,y1),(x2,y2),(x3,y3)位于同一直线上的充分必要条件.

10

习题 二

1. 计算下列矩阵的乘积.

?1???1?(1)=???32?10?; (2)

?2????3??3??2?(3) ?1234???; (4)

?1????0??500??1??031???2?; ??????021????3???a11x3???a21??a31a12a22a320?x1?1?0??0??0x2a13??x1??x?;a23???2? a33????x3??3?a11(5) ??a21??a31a12a22a32a13??100??011?; (6) a23????a33????001??210??1?0101???021??0??003??01?12?1??. 0?23??00?3?【解】

?32?1??3?21(1) ??64?2??96?30??5?0??; (2)??3?; (3) (10);

??0???1????0?33(4)

ax?ax?ax?(a12?a21)x1x2?(a13?a31)x1x3?(a23?a32)x2x3???aijxixj

211122222333i?1j?1?a11(5)??a21??a31a12a22a32?1a12?a13??0?a22?a23?; (6) ??0a32?a33????02?12?4??. 0?43??00?9?25?111??121??,B??13?1?, ?1112. 设A?????????1?11???214??求(1)AB?2A;(2) AB?BA;(3) (A+B)(A?B)?A2?B2吗?

?242??440?【解】(1) AB?2A??400?; (2) AB?BA??5?3?1?;

???????024????31?1??(3) 由于AB≠BA,故(A+B)(A?B)≠A2?B2.

11

3. 举例说明下列命题是错误的.

(1) 若A2?O, 则A?O; (2) 若A2?A, 则A?O或A?E; (3) 若AX=AY,A?O, 则X=Y. 【解】

??001?(1) 以三阶矩阵为例,取A??000?,A2?0,但A≠0

?000?????1?10?(2) 令A???000?,则A2=A,但A≠0且A≠E

?001?????110??2??1?(3) 令A???011??0,Y=?1?,X??2?

????????101????1????0??则AX=AY,但X≠Y.

?1??4. 设A?????, 求A2,A3,…,Ak. ??01???【解】A2???12???,A3???13???,,Ak???1k???01??01??01??. ??10?5. A=??0?1?, 求A2,A3并证明: ???00??????kk?k?1k(k?1)k?2Ak=?2????0?kk?k?1???.

?00?k????22?1???33?23??【解】A2=??0?22????,A3=??0?33?2?. ?00?2?????00?3??今归纳假设

???kk?k?1k(k?1)Ak=?2?k?2???0?kk?k?1???

?00?k??

12

那么

Ak?1?AkAk(k?1)k?2??kk?1?k?????10??2??0?1? =?kk?1??k??0??k?00????0??0?????k?1(k?1)?kk(k?1)k?1????2???0?k?1(k?1)?k?,???00?k?1??所以,对于一切自然数k,都有

?kk?k?1k(k?1)k?k=??A?2?2???0?kk?k?1???.

?00?k??6. 已知AP=PB,其中

?100?B=??000??100?,P=?2?10? ???1??00?1????21??求A及A5.

【解】因为|P|= ?1≠0,故由AP=PB,得

?100?A?PBP?1???200?, ?1?1??6???而

A5?(PBP?1)5?P(B)5P?1?100??100??100???2?10????10000??2?10???20????1??????211????00????411????6?1??abcd?7. 设A=?b?ad?c????cda?b??,求|A|. ??d?cba??解:由已知条件,A的伴随矩阵为

0?0??A.?1??? 13

?a??2222?bA=?(a?b?c?d)??c???dbd?ccab?add??c????(a2?b2?c2?d2)A ?b??a?又因为A?A=AE,所以有

?(a2?b2?c2?d2)A2=AE,且A?0,

2即 ?(a2?b2?c2?d)A2=(a2?b2?c2?d)2A4A=A E4于是有 A??(a2?b2?c2?d2)4??(a2?b2?c2?d2)2. 8. 已知线性变换

x1?2y1?y2,??y1??3z1?z2,???x2??2y1?3y2?2y3,?y2?2z1?z3, ?x?4y?y?5y;?y??z?3z,12323?3?3利用矩阵乘法求从z1,z2,z3到x1,x2,x3的线性变换. 【解】已知

?x1??2????2X??x2?????4?x3????y1???3???2Y??y2?????0?y3???10??y1??y??AY,32???2?15????y3??10??z1??z??Bz, 01???2??13????z3????421?X?AY?ABz?12?49?z,?????10?116??从而由z1,z2,z3到x1,x2,x3的线性变换为

?x1??4z1?2z2?z3,??x2?12z1?4z2?9z3, ?x??10z?z?16z.123?39. 设A,B为n阶方阵,且A为对称阵,证明:B?AB也是对称阵.

【证明】因为n阶方阵A为对称阵,即A′=A,

所以 (B′AB)′=B′A′B=B′AB, 故B?AB也为对称阵.

10. 设A,B为n阶对称方阵,证明:AB为对称阵的充分必要条件是AB=BA. 【证明】已知A′=A,B′=B,若AB是对称阵,即(AB)′=AB.

14

则 AB=(AB)′=B′A′=BA, 反之,因AB=BA,则

(AB)′=B′A′=BA=AB,

所以,AB为对称阵.

11. A为n阶对称矩阵,B为n阶反对称矩阵,证明: (1) B2是对称矩阵.

(2) AB?BA是对称矩阵,AB+BA是反对称矩阵. 【证明】

因A′=A,B′= ?B,故

(B2)′=B′·B′= ?B·(?B)=B2;

(AB?BA)′=(AB)′?(BA)′=B′A′?A′B′

= ?BA?A·(?B)=AB?BA;

(AB+BA)′=(AB)′+(BA)′=B′A′+A′B′

= ?BA+A·(?B)= ?(AB+BA).

所以B2是对称矩阵,AB?BA是对称矩阵,AB+BA是反对称矩阵.

12. 求与A=??11?01可交换的全体二阶矩阵. ???【解】设与A可交换的方阵为??ab??cd??,则由 ??11??????ab??ab??11?01?cd??=??cd????01??, 得

??a?cb?d??d?????aa?b?c?cc?d??. 由对应元素相等得c=0,d=a,即与A可交换的方阵为一切形如??a?0其中a,b为任意数.

?100?13. 求与A=??012?可交换的全体三阶矩阵.

?01?2????【解】由于

??000?A=E+?002?,

??3??01??而且由

b?a?的方阵,?15

?1??2??1???2???3???2???????(2) ξ1=?0?,ξ2=?2?,ξ3=?1?.

??????35?????2??????1????3????2??【解】

??2??3?(1) ξ1=?1?ξ2=?0?设齐次线性方程组为Ax=0

???????0???1??由?1,?2为Ax=0的基础解系,可知

??2??3??x1??x1???2k1?3k2????x???? x?k1?1??k2?0???xk221?????????????k2?0???1??????x3????x3???令 k1=x2 , k2=x3

?Ax=0即为x1+2x2?3x3=0.

?121???2?3?2???(2) A(?1?2?3)=0?A的行向量为方程组为(x1x2x3x4x5)?021??0的解.

??352?????1?3?2??x1?2x2?3x4?x5?0??即?2x1?3x2?2x3?5x4?3x5?0的解为 ?x?2x?x?2x?2x?02345?1?1?203?1??1?203?1?r3?r1?2?325?3?????012?1?1? ?r?2r??21?????1?212?2???001?1?1??得基础解系为?1=(?5 ?1 1 1 0)T ?2=(?1 ?1 1 0 1)T

??5?1110?A=? ???1?1101?方程为

??5x1?x2?x3?x4?0, ??x?x?x?x?0.?123511. 设向量组?1=(1,0,2,3),?2=(1,1,3,5),?3=(1,?1,a+2,1),

46

?4=(1,2,4,a+8),?=(1,1,b+3,5)

问:(1) a,b为何值时,?不能由?1,?2,?3,?4线性表出? (2) a,b为何值时,?可由?1,?2,?3, ?4惟一地线性表出?并写出该表出式.

(3) a,b为何值时,?可由?1,?2,?3,?4线性表出,且该表出不惟一?并写出该表出式. 【解】

??x1?1?x2?2?x3?3?x4?4 (*)

?1?0A?(Ab)???2??3?1?0??0??0111?13a?2511121?1?r3?2r1?????r4?3r1?b?3?1a?85?111??1?0?121?r3?r2??????r4?2r2?0a2b?1????2a?52??01241111?120a?1000a?11?1??b??0?

(1) ?不能由?1,?2,?3,?4线性表出?方程组(*)无解,即a+1=0,且b≠0.即a=?1,且b≠0.

(2) ?可由?1,?2,?3,?4惟一地线性表出?方程组(*)有惟一解,即a+1≠0,即a≠?1.

(*) 等价于方程组

?x1?x2?x3?x4?1?x?x?2x?1?234??(a?1)x3?b??(a?1)x4?0bba?b?1

?x4?0x3?x2?x3?1??1?a?1a?1a?1b2b?b?x1?1???0???1??a?1?a?1?a?12ba?b?1b?????1??2??3a?1a?1a?1(3) ?可由?1,?2,?3,?4线性表出,且表出不惟一?方程组(*)有无数解,

47

即有

a+1=0,b=0?a=?1,b=0.

?x1?k2?2k1方程组(*)???x?1?1?x2?x3?x4?x2?k1?2k2?1?x2?x3?2x?? 4?1?x3?k1??x4?k2k1,k2,k3,k4为常数.

∴??(k2?2k1)?1?(k1?2k2?1)?2?k1?3?k2?4

??x1?x2?a1x?x?12. 证明:线性方程组??23a25?x?3?x4?a3有解的充要条件是?ai?0.

i?1?x4?x5?a4??x5?x1?a5【解】

??1?1000a1?01?1a?2A??00??001?10a?????r2?r31??0001?1a?4????10001a5????1?1000a1??01?100a?2??001?10a?r3?5?r2?0001?1a?????4???0?1001a1?a5????1?1000a1??01?100a?2??001?10a?3?????0001?1a?4???00?101a1?a2?a5????1?1000a1??01?100a?2?0a??01?103?

?0001?1a?4???5??00001a?i?i?1?方程组有解的充要条件,即R(A)=4=R(A)

48

??ai?0得证.

i?15ξ1,ξ2,13. 设?*是非齐次线性方程组Ax=b的一个解,,ξn?r是对应的齐次线性方

程组的一个基础解系.证明

(1)?*,ξ1,,ξn?r线性无关;

(2)?*,?*+ξ1,,?*+ξn?r线性无关.

【 证明】 (1) ?*,ξ1,,ξn?r线性无关? k?*?k1ξ1??kn?rξn?r?0成立,

当且仅当ki=0(i=1,2,…,n?r),k=0

A(k?*?k1ξ1??kn?rξn?r)?0?kA?*?k

1Aξ1??kn?rAξn?r?0∵ξ1,ξ2,,ξn?r为Ax=0的基础解系

?A?i?0(i?1,2,,n?r)

?kA?*?0由于A?*?b?0

?k?b?0?k?0.. 由于ξ1,ξ2,,ξn?r为线性无关 k1ξ1?ξ2?k2??kn?r?ξn?r?0?ki?0(i?1,2,,n?r)∴?*,ξ1,ξ2,,ξn?1线性无关.

(2) 证?*,?*+ξ1,,?*+ξn?r线性无关.

?k?*?k*1(??ξ1)??kn?r(?*?ξn?r)?0成立

当且仅当ki=0(i=1,2,…,n?r),且k=0

k?*?k1(?*?ξ1)??k*n?r(??ξn?r)?0

(k?k1??kn?r)?*?k1ξ1??kn?rξn?r?0

由(1)可知,?*,ξ1,,ξn?1线性无关.

49

即有ki=0(i=1,2,…,n?r),且

k?k?k?0?k?0

1n?r∴?*,?*+ξ1,,?*+ξn?r线性无关.

14. 设有下列线性方程组(Ⅰ)和(Ⅱ)

?(Ⅰ)?x1?x2?2x4??6??4x?x1?mx2?x3?x4??51?x2?x3?x4?1 (Ⅱ) ?nx2?x3?2x4??11

??3x1?x2?x3?3??x3?2x4?1?t(1) 求方程组(Ⅰ)的通解;

(2) 当方程组(Ⅱ)中的参数m,n,t为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换

??110?2?6??10?2?6???110?2?6??4?1?1?11??1?0?5?1725????00?125??3?1?103????0?4?1621????0?1?4??01??? ?100?1?2??010?1?4???001?2?5???由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组

??x1?x4?0?x2?x4?0 ??x3?2x4?0得方程组(*)的基础解系

??1????1?1??2??

?1?????2?令x ????4?4?0,得方程组(Ⅰ)的特解 ????5?

?0??于是方程组(Ⅰ)的通解为x???k?,k为任意常数。

(2) 方程组(Ⅱ)的增广矩阵为

??1m?1?1?5??0n??44m?3n0012?t??1?2?11??01?21?t??0n0?4?10?t? ?0????001?21?t???

*)50

(1)A=???1????, 证明 2?Ak=???k1?????k?,f(A)??f(?1)2??f(?; 2)??(2) 设A=P?1BP, 证明Bk=PAkP?1,f(B)?Pf(A)P?1. 【证明】

2???2(1)A?10?,A3??0??0?2???31?3?即k=2和k=3时,结论成立. 2??02?今假设

k???kA?10??0?k?, 2?那么

k?1Ak?1?AkA=???k10???10???1?0?k?????0?k?, 2??0?1?2??0?2?所以,对一切自然数k,都有

Ak????k10??0?k?, 2?而

f(A)?a0E+a1A++amAm?a?1???1?0??1???a1???++a??m1??m?2???m?2??a0?a1?1++am??m?10??0a++am?0?a1?2m?2????f(?1)??f(??.2)?(2) 由(1)与A=P ?1BP,得

B=PAP ?1.

Bk=( PAP ?1)k= PAkP ?1,

f(B)?a0E?a1B??amBm?a0E?a?11PAP??a1mPAmP??P(a0E?a1A+?am?1

mA)P?Pf(A)P?1.

21

?ab?2x?(a?d)x?ad?bc?0. 24. A=?,证明矩阵满足方程??cd?【证明】将A代入式子x2?(a?d)x?ad?bc得

A2?(a?d)A?(ad?bc)E?ab??ab??10????(a?d)?(ad?bc)??cd??01??cd?????0? ?a2?bcab?bd??a2?adab?bd??ad?bc??????2?2?ad?bc???ac?cdcb?d??ac?cdad?d??0?00?????0.00??故A满足方程x2?(a?d)x?ad?bc?0. 25. 设n阶方阵A的伴随矩阵为A?,

证明:(1) 若|A|=0,则|A?|=0;

(2) A??An?1.

【证明】(1) 若|A|=0,则必有|A*|=0,因若| A*|≠0,则有A*( A*)?1=E,由此又得

A=AE=AA*( A*)?1=|A|( A*)?1=0,

这与| A*|≠0是矛盾的,故当|A| =0,则必有| A*|=0. (2) 由A A*=|A|E,两边取行列式,得

|A|| A*|=|A|n,

若|A|≠0,则| A*|=|A|n?1 若|A|=0,由(1)知也有

| A*|=|A|n?1.

26. 设

?5?2A=??0??0200??3?4100??,B???0073???052??0200?500??. 041??062?2求(1) AB; (2)BA; (3) A?1;(4)|A|k (k为正整数). 【解】

?232000??19800??10900??301300??; (2) BA=??; (1)AB=??004613??003314?????00329005222????

22

0??1?20??250?0?1?; (4)Ak?(?1)k. (3) A=??00?23????005?7?27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.

?12000??003?1??25000??0021????; (1)?00300?; (2)???00010????00001????20102?2013?(3)?0??00100???00010?.

???00001??【解】(1) 对A做如下分块 其中

A?11???2A1,A2的逆矩阵分别为

A?1???51??2所以A可逆,且

?1???A?1A1?同理(2)

??2100???2300?? A???A10??0A? 2?2??300?5??;A2???010?,

?01??0????2?A?1?1??;300?1?2???010?, ???001????5?2000??2000???11?A?1????0000??.

2??3?00010????00001??23

?A?1???A2A1?????1???A1?1??0??0?1A2???????1?5?2???5120015353814001???8?1?4? ?.0???0??(3)

?1?2??0?1 A???0??0??0012000?0?12010??1??3??2?. 0??0??1?0100

习题 三

1. 略.见教材习题参考答案. 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 略.见教材习题参考答案.

5.?1??1??2,?2??2??3,?3??3??4,?4??4??1,证明向量组?1,?2,?3,?4线性相关.

【证明】因为

?1??2??3??4?2(?1??2??3??4)??1??2??3??4?2(?1??3) ??1??2??3??4?0所以向量组?1,?2,?3,?4线性相关.

6. 设向量组?1,?2,里?i??1??2???i.

,?r线性相关,则存在不全为零的数k1,k2,,kr,使

24

,?r线性无关,证明向量组?1,?2,,?r也线性无关,这

【证明】 设向量组?1,?2,

k1?1?k2?2??kr?r?0.

把?i??1??2???i代入上式,得

?kr)?1?(k2?k3??kr)?2??kr?r?0.

(k1?k2?又已知?1,?2,,?r线性无关,故

?k1?k2??kr?0,?k??k?0,?2r ? ??kr?0.?该方程组只有惟一零解k1?k2?线性无关.

7. 略.见教材习题参考答案. 8. ?i?(?i1,?i2,关.

【证明】已知A?aij?0,故R(A)=n,而A是由n个n维向量?i?(?i1,?i2,i?1,2,,n组成的,所以?1,?2,,?n线性无关.

,tin?1),i?1,2,,r是线性

?kr?0,这与题设矛盾,故向量组?1,?2,,?r,?in),i?1,2,,n.证明:如果aij?0,那么?1,?2,,?n线性无

,?in),

9. 设t1,t2,,tr,是互不相同的数,r≤n.证明:?i?(1,ti,无关的.

【证明】任取n?r个数tr+1,…,tn使t1,…,tr,tr+1,…,tn互不相同,于是n阶范德蒙行列式

11t1trt12tr22r?1t1n?1trn?1tn?1r?11tr?1t1tn?0,

2tnn?1tn从而其n个行向量线性无关,由此知其部分行向量?1,?2,10. 设?1,?2,,?s的秩为r且其中每个向量都可经?1,?2,,?s的一个极大线性无关组.

,?r也线性无关.

,?r线性表出.证明:

?1,?2,,?r为?1,?2, 25

A?(?1,?2,?1,?2)?1?1???0??0120??112?0?1?30?11????13?1??000??13?1??0000? 1??,0??0?由此知向量组?1,?2与向量组?1,?2的秩都是2,并且向量组?1,?2可由向量组

?1,?2线性表出.由习题15知这两向量组等价,从而?1,?2也可由?1,?2线性表出.所以

L(?1,?2)?L(?1,?2).

26. 在R3中求一个向量?,使它在下面两个基

(1)?1?(1,0,1),?2?(?1,0,0)?3?(0,1,1)(2)?1?(0,?1,1),?2?(1,?1,0)?3?(1,0,1)下有相同的坐标.

【解】设?在两组基下的坐标均为(x1,x2,x3),即

?x1??x1???(?,?,?)?x?,??(?1,?2,?3)?x2123?2??????x3???x3??

?1?10??x1??011??x1??001??x????1?10??x????2????2???101????101????x3????x3??即

?1?2?1??x1??111??x??0, ???2???000????x3??求该齐次线性方程组得通解

x1?k,x2?2k,x3??3k (k为任意实数)

??x1?1?x2?2?x3?3?(k,2k,?3k).

27. 验证?1?(1,?1,0),?2?(2,1,3),?3?(3,1,2)为R3的一个基,并把?1?(5,0,7),

?2?(?9,?8,?13)用这个基线性表示.

31

【解】设

A?(?1,?2,?3),B?(?1,?2),

又设

?1?x11?1?x21?2?x31?3,?2?x12?1?x22?2?x32?3,

?x11x12?(??1,?2)?(?1,?2,?3)??x21x22??, ?x31x32??记作 B=AX.

?1235?9??1235?9?(AB)????1110?8????r2?r145?17??13?????03????r2?r3r2?r3??0327????0327?13????1235?9??10023??0327?13??????作初等行变换??0103?3??2?2?4????00???001?1?2???因有A?E,故?1,?32,?3为R的一个基,且

?23?(?1,?2)?(?1,?2,?3)??3?3???2?,

??1??即

?1?2?1?3?2??3,?2?3?1?3?2?2?3.

习题四

1. 用消元法解下列方程组.

??x1?4x2?2x3?3x4?6,?x1?2x2?2x3?2,(1) ??2x1?2x2?4x4?2, (2) ??3x?2x1?5x2?2x3?4,

1?2x2?2x3?3x4?1,???xx?2x?4x?6;1?2x2?3x?1233?3x4?8;【解】(1)

32

??1(Ab)??2??3?1??1?0??0?0??1?0??0?0??1?0??0?0得

所以

(2)

解②?①×2得 ③?① 得 得同解方程组

4?236???236?2042?r?1?14211021?22?31?????2??322?31?rr4?r12?r1????r3?3r2?23?38????123?38??4?236??32?1?5?(?1)?r2?r3?12?9?2????????25?62??4?236??4?236?1?292??101?292?r4?r?32?1?5?????r3?3r2r4?2r2???00?4261?????3??25?62????001126??4?236??1?236?1?292??4r01?292?01126?????4?4r3???001126??,0?4261????0007425????x1?4x2?2x3?3x4?6?? x2?2x3?9x4?2 ? x3?12x4?6?? 74x4?25??x1??187,?74??x2?211?74, ?x?144?3,?74??x254?74.??x1?2x2?2x3?2① ?2x1?5x2?2x3?4 ?② ?x1?2x2?4x3?6③ x2?2x3=0 2x3=4 ??x1?2x2?2x3?2④ ? x2?2x3?0 ?? 2x3?433

⑤ ⑥ 由⑥得 x3=2, 由⑤得 x2=2x3=4,

由④得 x1=2?2x3 ?2x2 = ?10, 得 (x1,x2,x3)T=(?10,4,2)T. 2. 求下列齐次线性方程组的基础解系.

? x?1?3x2?2x? x1? x2?5x3? x4?0,(1) ?3?0,? x1?5x2? x3?0, (2)

??? x1? x2?2x3?3x4?0,?3x1?5x2?8x3?0;?3x1? x2?8x3? x4?0,?? x1?3x2?9x3?7x4?0;?(3) ? x1? x2?2x3?2x4?7x5?0,?2x1?3x2?4x3?5x4 ?0,

??3x1?5x2?6x3?8x4 ?0;?? x1?2x2?2x3?2x4? x5?0,? x1?2x2? x3?3x4?2x5?0, ??2x1?4x2?7x3? x4? x5?0.【解】(1)

??x1?3x2?2x3?0,?x1?5x2?x3?0, ??3x1?5x2?8x3?0.?132??132??132?A??r?151????2?r1??02?1????r3?2r2??02?1? ?358?r3?3r1?????????0?42????000??得同解方程组

?x??2x?3x??7x3??x3x?1322,1?2?2x3?0??2x??2?x3?0?x2?1x3, ?2?x3?x3,得基础解系为

?T?71???221??. (2) 系数矩阵为

(4)

34

??1?15?1??1?1A??11?23???181??5?1?????r2?r1r??02?74?????r3?r2??3r3?3r14?r?02?74?r4?2r2?13?97?1???04?148????1?15?1?

?02?74???0000??r(A)?2.?0000??∴ 其基础解系含有4?R(A)?2个解向量.

?x1??3??x3?x??3?4??x??2????2?????1??x?5x02?1?x23?x4??2x???????7???2x3?2x4???x?7??2?3?x42?7x3?4x4?0?x3??2???0????x?x4???3??x?????1?????14????0??基础解系为

???3??2???7???1???2???,?2???. ?1??0????1???0?? (3)

?11227??11227?A???23450????r2?2r1??0101?14???35680?r3?3r1????02?21??02???11227?

???r3?2r2???0101?14???00007???得同解方程组

??x1?x2?2x3?2x4?7x5?0,?x2?x4?14x5?0, ??7x5?0?x5?0.取??x3?????1??,??0??得基础解系为 ?x4??0??1?

35

(?2,0,1,0,0)T,(?1,?1,0,1,0).

(4) 方程的系数矩阵为

?12?22?1???12?22?1?A???12?13?2???r2?r1??0011?1???24?71?r3?2r11??????00?3?33???12?22?1?

???r3?3r2???0011?1?R(A)?2,??00000???∴ 基础解系所含解向量为n?R(A)=5?2=3个

?x2??取??x??x2??4为自由未知量 ????0??1???0?x?4?0?,?0?x5??????x5???1?,?1?, ??????????0???0????3???2????4?得基础解系 ?0?????1???1?,?0????0?,??0?????1 .???0??1??1????0?????0??3. 解下列非齐次线性方程组.

??x1?x2?2x3?1,(1) ??2x1?x2?2x3?4,?2x1?x2?x3?x4?1, (2) ??4x1?2x2?2x3?x4?2,?x1?2x2?3,???4x?2x1?x2?x3?x4?1;1?x2?4x3?2;?x?2x?x?x?1,?x1?x2?x3?x4?x5?7,(3) ?1234??x?x?3x1?2x2?x3?x4?3x5??2,?1?2x23?x4??1, (4) ??x?2x?x?x?5;?x2?2x3?2x4?6x5?23,1234??5x1?4x2?3x3?3x4?x5?12.【解】

(1) 方程组的增广矩阵为

??1121??121?(Ab)??2?124??1r?2r0?3?22???1?203?????21rr3?r1??4?4r1?0?3?22?????r3?r2r4?r2??4142????0?3?4?2????1121??121?

?0?3?22??1r?14?r30?3?22???0000??????2???0012???00?2?4????0000??

36

得同解方程组

x?2,???x1?x2?2x3?1?3??3x?2x?2?2?2x3?23??x2??x?3??2, 3?2???x1?1?x2?2x3??1.(2) 方程组的增广矩阵为

?21?111??21?111?(Ab)??r3?r?42?212?????1?r2?2r1?000?10? ??11????21?1???000?20??得同解方程组

??2x1?x2?x3?x4?1,??x?4?0,?x4?0 ??2x4?0,即

??2x1?x2?x3?1,?x 4?0.令x1?x3?0得非齐次线性方程组的特解

xT=(0,1,0,0)T.

又分别取

??x2??1?????0?x???0??,??1?? 3得其导出组的基础解系为

T????1?1;??1?T??2,1,0,0??2???2,0,1,0??,

∴ 方程组的解为

??0????1??1?2??x??1????k???2??k1,k2?R

?0?1?1???k2?0?.?0?0??1?????0??????0????1?2111??1?2(3) ??1?21?1?1?111????r2?r1r?r??000?2?2??1?2115?31???????00004??R(A)?R(A)∴ 方程组无解.

37

(4) 方程组的增广矩阵为

?1?3(Ab)???0??5?1?0r3?r2?????r4?r2?0??0分别令

11117?7??11111?0?1?2?2?6?23?211?3?2?r3?3r1???????r4?5r1?0122623?122623????433?112?0?1?2?2?6?23??

11117??1?2?2?6?23??,00000??00000??x3??0??1??0??x???0?,?0?,?1? ?4?????????1????0????0???x5????x?x?x?x?x?0得其导出组?12345的解为

?x?2x?2x?6x?0345?2?5??1??1???6???2???2???????k1?0??k2?1??k3?0???????00?????1?????1???0???0??令x3?x4?x5?0,

得非齐次线性方程组的特解为:xT=(?16,23,0,0,0)T,

∴ 方程组的解为

??16??5??1??1??23???6???2???2?????????x??0??k1?0??k2?1??k3?0? ????????000???????1??????0???1???0???0??其中k1,k2,k3为任意常数.

4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及

对其它车间的消耗如下表所示. 车间 出厂产量 总产量 1 2 3 消耗系数 (万元) (万元) 车间 1 0.1 0.2 0.45 22 x1

38

k1,k2,k3?R.

2 0.2 0.2 0.3 0 x2 3 0.5 0 0.12 55.6 x3 表中第一列消耗系数0.1,0.2,0.5表示第一车间生产1万元的产品需分别消耗第一,二,三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.

解:根据表中数据列方程组有

??x1? 0.1x1?0.2x2? 0.45x3?22,?x2? 0.2x1?0.2x2?0.3x3?0, ??x3?0.5x1?0.12x3?55.6,?0.9x1?0.2x2? 0.45x即 ?3?22,? 0.2x?1?0.8x2?0.3x3?0,

?0.5x1?0.88x3??55.6,?x1?100解之 ?,?x?2?70,

?x3?120;5. ?取何值时,方程组

???x1?x2?x3?1,?x1??x2?x3??, ??x1?x2??x3??2,(1)有惟一解,(2)无解,(3)有无穷多解,并求解.

【解】方程组的系数矩阵和增广矩阵为

???11??A??1?1??;??111?B???1?1??,

?11?????11??2???|A|=(??1)2(??2).

(1) 当?≠1且?≠?2时,|A|≠0,R(A)=R(B)=3.

∴ 方程组有惟一解

???11(??1)2x1???2,x2???2,x3?(??2).

(2) 当?=?2时,

???2111??1?21?2?B??1?21?2??24????r2?r1??r???2111?????3?r1r2?2r1???11???11?24????1?21?2??

?0?33?3??1?21?2??0??03?36????33?3??,???0003??

39

R(A)≠R(B),∴ 方程组无解. (3) 当?=1时

?1111??1111?r2?r1?0000? B??1111???????r3?r1?????1111???0000??R(A)=R(B)<3,方程组有无穷解.

得同解方程组

x??x?x?1,??123?x2?x2, ??x3?x3.∴ 得通解为

??x1???1???1??1??x?2?k?1??k?0???0?, k,k?R.

??1??x3????2??12?0???????1???0??6. 齐次方程组

???x?y?z?0,?x??y?z?0, ??2x?y?z?0当?取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为

???11?A??1??1?

?2?11????|A|=(??4)(??1)

当|A|=0即?=4或?=?1时,方程组有非零解.

(i) 当?=4时,

?411??14?1??14?1?A???14?1????r2?r1??411????r2?4r1?r??0?155?????2?11????2?11?32r1?????0?93????1??14?1????r1?142?5?r10?1????r3?r2??0?31?3?3?3??0?31??????000???得同解方程组

40

?1???3??x1????x1?4x2?x3?0????x?k?1?.k?R ??3x?x?0??2?23???x??3??3????1?(ii) 当?=?1时,

??111??1?1?1??1?1?1?r2?r1r2?r1?000? A??1?1?1???????111?????????r3?2r1??????2?11???2?11???013??得

?x1??2x3,?x1?x2?x3?0???x2??3x3, ??x2?3x3?0?x?x3?3∴ (x1,x2,x3)T=k·(?2,?3,1)T.k∈R

7. 当a,b取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求

出其解.

?x1?2x2?3x3?x4?1?x1?x2?x3?x4?0?x?x?2x?3x?1?x?2x?2x?1?12?34234(1) ? (2) ?

?3x1?x2?x3?2x4?a??x2?(a?3)x3?2x4?b???2x1?3x2?x3?bx4??6?3x1?2x2?x3?ax4??1【解】方程组的增广矩阵为 (1)

?12?11(Ab)???3?1??23?12?0?1??00??003?123?1?2?13?1?3?6??1?r2?r1?0r3?3r1??????r4?2r1??0??b?6??0?11??1?040???????0?27a?3???b?2?8??011a23?1?1?7?101?0?r3?7r2?????a?3?r4?r2??1?7b?2?8?

23?11??1?140??.0?3?27a?3??00b?52?2a?2??141(i) 当b≠?52时,方程组有惟一解

a4(a?1)a?326(a?1)?,x2??,3b?523b?52

a?318(a?1)2(a?1)x3???,x4??.3b?52b?52x1? 41

(ii) 当b=?52,a≠?1时,方程组无解.

(iii) 当b=?52,a=?1时,方程组有无穷解. 得同解方程组

?x1?2x2?3x3?x4?1???x2?x3?4x4?0 (*) ???3x3?27x4??4?x1?2x2?3x3?x其导出组?4?0??x2?x3?4x4?0的解为

???3x3?27x4?0??x1?2x4,??x?13x?x1??2??24?x??x3??9x4,???x?x????k?13?2?.k?R 34?x4.?x????9??4??1?非齐次线性方程组(*)的特解为

?5??x??1??3?取x

x?35?4=1, ?2??????3?. ?x3????x???234????3??1??∴ 原方程组的解为

??5??3??35????2?13?x???3??k??k?R

??9??.??23??????3?1??1?? (2)

42

110??11?01?221(Ab)???????r3?r2r4?3r1??0?1(a?3)?2b??321a?1????11110??01221?r4?r2??00a?10b?1?????? ?0?1?2a?3?1????11110??01221???00a?10b?1??.?000a?10??(i) 当a?1≠0时,R(A)=R(A)=4,方程组有惟一解.

?b?a?2??x??a?1?1???x?a?2b?3?2??????a?1?x?. 3??b??x???1?4???a?1??0??(ii) 当a?1=0时,b≠?1时,方程组R(A)=2

(iii) 当a=1,b= ?1时,方程组有无穷解. 得同解方程组

??x1?x2?x3?x4?0,?x 2?2x3?2x4?1.取

??x1?x3?x4?1,??x2??2x3?2x4?1, ?x3?x3,??x4?x4,∴ 得方程组的解为

43

??x1??1??1???1??x??2?2???2??1??x??k1?1???k2??0??????.k1,k2?R

?3???x??4??0????1???0??0???112?8. 设A???224?,求一秩为2的3阶方阵B使AB=0.

???336??【解】设B=(b1 b2 b3),其中bi(i=1,2,3)为列向量,

AB?0?A(b1b2b3)?0?Abi?0(i?1,2,3)

?b1b2b3为Ax=0的解.

?112?求??224?????x1??x?2?=0的解.由 ?336????x3???112??112?A??r?224????2?2r1??000? ?6?r3?3r1????33???000??得同解方程组

??x1??x2?2x3,?x?2?x2, ?x3?x3,∴ 其解为

??x1???1???2??x??k?1??k?0?2.k1,k2?R

??1??x3????2???0????1??取

???1?????2??0?b1?1;b2??0?????;b3???0?,

?0????1?????0??则

??1?20?B???100???

?010??

44

9.已知?1,?2,?3是三元非齐次线性方程组Ax=b的解,且R(A)=1及

?1????1??1?1??2???0??,?2??3???1??,?1??3??1?, ?0?????0?????1??求方程组Ax=b的通解.

【解】Ax=b为三元非齐次线性方程组

R(A)=1?Ax=0的基础解系中含有3?R(A)=3?1=2个解向量.

?1?1??0?????13?(?1??2)?(?2???3)??0?1???1?,?????0????0???1?1?

?)?(???0?1??2?(?1??32??3)???1?1??0?,?1?0????????1??由?1,?2,?3为Ax=b的解??1??3,?1??2为Ax=0的解,

且(?1??3),(?1??2)线性无关??1??3,?1??2为Ax=0的基础解系. 又

?1?12?(?1??2)?(?2??3)?(?1??3)??1??1???1???1?1??1?1??2? 20?1??1????0??,???0??2????0??2????1????1??2??∴ 方程组Ax=b的解为

x??1?k1(?1??3)?k2(?1??2)??1?2???0????0????0???k1?1?k20?.k

1,k2?R??????1???0????1???2??10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.

???2????3?(1) ξ1=1,ξ2=?0????;

?0?????1?? 45

【证明】若 ?1,?2,线性相关,且不妨设

,?r

(1)

?1,?2,,?t (t

,?s的一个极大无关组,这与

,?s的一个极

是(1)的一个极大无关组,则显然(2)是?1,?2,?1,?2,,?s的秩为r矛盾,故?1,?2,,?r必线性无关且为?1,?2,大无关组.

11. 求向量组?1=(1,1,1,k),?2=(1,1,k,1),?3=(1,2,1,1)的秩和一个极大无关组. 【解】把?1,?2,?3按列排成矩阵A,并对其施行初等变换.

?1?1A???1??k11??111??111??11?0??0??0k?112?0101?????????k1??0k?10??0k?10??00??????11??01?k1?k??001?k??001?0?? 1??0?当k=1时,?1,?2,?3的秩为2,?1,?3为其一极大无关组. 当k≠1时,?1,?2,?3线性无关,秩为3,极大无关组为其本身.

,b,,)使向量组?1?(1,1,0),?2?(1,1,1),?3与向量组12. 确定向量?3?(2a?1=(0,1,1),

?2=(1,2,1),?3=(1,0,?1)的秩相同,且?3可由?1,?2,?3线性表出. 【解】由于

?0A?(?1,?2,?3)??1???1?1B?(?1,?2,?3)??1???01211111??1??00????1????02??1??0a???b????00?;?1?1??00??

12?,1b??0a?2??2而R(A)=2,要使R(A)=R(B)=2,需a?2=0,即a=2,又

a??0112??120?, c?(?1,?2,?3,?3)??120a???0112??????11?1b????000b?a?2??

26

要使?3可由?1,?2,?3线性表出,需b?a+2=0,故a=2,b=0时满足题设要求,即

?3=(2,2,0). 13. 设?1,?2,,?n为一组n维向量.证明:?1,?2,,?n线性无关的充要条件是任

一n维向量都可经它们线性表出.

【证明】充分性: 设任意n维向量都可由?1,?2,,?n线性表示,则单位向量

?1,?2,,?n,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以

,?n的秩为n,因此线性无关.

,?n线性无关,任取一个n维向量?,则?1,?2,,?n线性表示.

,?n线性

向量组?1,?2,必要性:设?1,?2,相关,所以?能由?1,?2,14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.

?100???3,且向量组(1,0,0)110证明:由已知条件,R?,(1,1,0),(1,????111??1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且

R(?1,?2,?3)?3,

又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表

出,即两向量组等价,且

R(?1,?2,?3,?4)?3,

所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.

15. 略.见教材习题参考答案. 16. 设向量组?1,?2,线性表出.证明?1,?2,【解】设向量组

,?m与?1,?2,,?m与?1,?2,,?s秩相同且?1,?2,,?s等价.

,?m能经?1,?2,,?s?1,?2,与向量组

,?m (1)

?1,?2,,?s (2)

27

的极大线性无关组分别为

?1,?2,和

,?r (3)

?1,?2,,?r (4)

由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即

?i??aij?jj?1r(i?1,2,,r).

因(4)线性无关,故(3)线性无关的充分必要条件是|aij|≠0,可由(*)解出

?j(j?1,2,,r),即(4)可由(3)线性表出,从而它们等价,再由它们分别同

(1),(2)等价,所以(1)和(2)等价. 17. 设A为m×n矩阵,B为s×n矩阵.证明:

?A?max{R(A),R(B)}?R???R(A)?R(B).

?B??A?【证明】因A,B的列数相同,故A,B的行向量有相同的维数,矩阵??可视为由

?B??A?矩阵A扩充行向量而成,故A中任一行向量均可由??中的行向量线性表示,

?B?故

?A?R(A)?R??

?B?同理

?A?R(B)?R??

?B?故有

?A?max{R(A),R(B)}?R??

?B?又设R(A)=r,?i1,?i2,,?ir是A的行向量组的极大线性无关组,R(B)=k,

?j1,?j2,?A?,?jk是B的行向量组的极大线性无关组.设?是??中的任一行向量,

?B?,?ir表示,若?属于B的行向量组,

则若?属于A的行向量组,则?可由?i1,?i2, 28

则它可由?j1,?j2,?A?,?jk线性表示,故??中任一行向量均可由

?B?,?jk线性表示,故

?i1,?i2,,?ir,?j1,?j2,?A?R???r?k?R(A)?R(B), ?B?所以有

?A?max{R(A),R(B)}?R???R(A)?R(B).

?B?18. 设A为s×n矩阵且A的行向量组线性无关,K为r×s矩阵.证明:B=KA行无关的充分必要条件是R(K)=r. 【证明】设

A=(As,Ps×(n?s)),

因为A为行无关的s×n矩阵,故s阶方阵As可逆. (?)当B=KA行无关时,B为r×n矩阵.

r=R(B)=R(KA)≤R(K),

又K为r×s矩阵R(K)≤r,∴ R(K)=r. (?)当r=R(K)时,即K行无关,

由B=KA=K(As,Ps×(n?s))=(KAs,KPs×(n?s)) 知R(B)=r,即B行无关.

19. 略.见教材习题参考答案.

20. 求下列矩阵的行向量组的一个极大线性无关组.

?25?75(1)??75??2543??1?09453132??; (2)??29454134???322048??13117121?215?1??. 03?13??104?1?2??1????【解】(1) 矩阵的行向量组?2?的一个极大无关组为?1,?2,?3;

??3?????4???1????(2) 矩阵的行向量组?2?的一个极大无关组为?1,?2,?4.

??3?????4?21. 略.见教材习题参考答案. 22. 集合V1={(x1,x2,向量空间?为什么?

29

,xn)|x1,x2,,xn∈R且x1?x2??xn=0}是否构成

【解】

2由(0,0,…,0

1)∈

V1

,V1

)非空

,,设

??(x1x,x,n?V,??1)yy,yn?(2Vk,?R)则,

????(x1?y1,x2?y2,,xn?yn)

k??(kx1,kx2,,kxn).因为

(x1?y1)?(x2?y2)??(x1?x2?kx1?kx2??(xn?yn)?yn)?0, ?xn)?0,?xn)?(y1?y2??kxn?k(x1?x2?所以????V1,k??V1,故V1是向量空间.

23. 试证:由?1?(1,1,0),?2?(1,0,1),?3?(0,1,1),生成的向量空间恰为R3. 【证明】把?1,?2,?3排成矩阵A=(?1,?2,?3),则

110A?101??2?0,

011所以?1,?2,?3线性无关,故?1,?2,?3是R3的一个基,因而?1,?2,?3生成的向量空间恰为R3.

?4?(1,1,2,1)所生的向量空24. 求由向量?1?(1,2,1,0),?2?(1,1,1,2),?3?(3,4,3,4),间的一组基及其维数.

【解】因为矩阵

A?(?1,?2,?3,?4,?5)?1?2???1??01112343411214??11314??11314??0?1?2?1?3??0?1?2?1?3? 5????????,6??00012??00012??????4??02414??00000?∴?1,?2,?4是一组基,其维数是3维的.

25. 设?1?(1,1,0,0),?2?(1,0,1,1),?1?(2,?1,3,3),?2?(0,1,?1,?1),证明:

L(?1,?2)?L(?1,?2).

【解】因为矩阵

30

本文来源:https://www.bwwdw.com/article/0yev.html

Top