2018年高考真题 - 理科数学(全国卷II)+Word版含解析
更新时间:2024-05-04 01:52:01 阅读量: 综合文库 文档下载
绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学(全国卷II)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A.
B.
C.
D.
【答案】D
【解析】分析:根据复数除法法则化简复数,即得结果. 详解:
选D.
点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合
A. 9 B. 8 C. 5 D. 4 【答案】A
【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解: 当当当
时,时,时,
; ; ;
,
,则中元素的个数为
所以共有9个,选A.
点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.
3. 函数的图像大致为
A. A B. B C. C D. D 【答案】B
【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:
舍去D;
,
所以舍去C;因此选B.
点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足
,
,则
为奇函数,舍去A,
A. 4 B. 3 C. 2 D. 0 【答案】B
【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为所以选B.
点睛:向量加减乘:
5. 双曲线的离心率为,则其渐近线方程为
A. 【答案】A
B. C. D.
【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果. 详解:
因为渐近线方程为,所以渐近线方程为,选A.
点睛:已知双曲线方程求渐近线方程:.
6. 在A.
中, B.
,
C.
, D.
,则
【答案】A
【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB. 详解:因为所以
,选A.
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 7. 为计算
,设计了下面的程序框图,则在空白框中应填入
A. B.
C. D.
【答案】B
【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项. 详解:由中应填入
,选B.
得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框
点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.
8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如等于30的概率是
A. B. C. D. 【答案】C
【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.
详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有
种方法,因为
,选C.
,所以随机选取两个不同的数,其和等于30的有3种.在不超过30的素数中,随机选取两个不同的数,其和
方法,故概率为
点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.
9. 在长方体
中,
,
,则异面直线
与
所成角的余弦值为
A. B. C. D. 【答案】C
【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.
详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则所以
,
,
因为,所以异面直线与所成角的余弦值为,选C.
点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 10. 若
在
是减函数,则的最大值是
A. B. C. D. 【答案】A
【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值 详解:因为所以由因此点睛:函数(1)
. (2)周期
得,
,从而的最大值为,选A.
的性质: (3)由
求对称轴, (4)由
求增区间;
由11. 已知A.
是定义域为
求减区间. 的奇函数,满足
.若
,则
B. 0 C. 2 D. 50
【答案】C
【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为
是定义域为
的奇函数,且
,
或
点睛:确定圆的方程方法
.
(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法 ①若已知条件与圆心的值;
②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值. 20. 如图,在三棱锥
(1)证明:(2)若点在棱
中,平面
;
为
,求
与平面
所成角的正弦值.
,
,为
的中点.
和半径有关,则设圆的标准方程依据已知条件列出关于
的方程组,从而求出
上,且二面角
【答案】(1)见解析(2)
【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果. 详解:(1)因为连结且由由
.因为,
知知
. . 平面
.
的方向为轴正方向,建立空间直角坐标系
,为,所以
的中点,所以,且.
为等腰直角三角形,
(2)如图,以为坐标原点,.
由已知得设设平面由
,则
的法向量为
得
.
,可取.
取平面的法向量.
,
所以.由已知得.
所以.解得(舍去),.
所以所以
与平面
.又,所以.
所成角的正弦值为.
点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 21. 已知函数
(1)若(2)若
.
,证明:当在
时,
;
只有一个零点,求.
【答案】(1)见解析(2)
详解:(1)当设函数当而
时,,故当
时,
,则,所以时,
.
等价于.
.
单调递减.
在,即
.
(2)设函数在(i)当(ii)当当所以故①若②若③若
只有一个零点当且仅当时,时,时,在
;当
单调递减,在是,即,即,即
在,,,
在只有一个零点.
没有零点;
. 时,单调递增.
.
的最小值. 在在
没有零点; 只有一个零点; ,所以
在
有一个零点,
,由于
由(1)知,当故
在
在
时,,所以
在
有两个零点. .
.
有一个零点,因此
综上,只有一个零点时,
点睛:利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.
(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。 22. [选修4-4:坐标系与参数方程] 在直角坐标系
中,曲线的参数方程为
(为参数),直线的参数方程为
(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为【答案】(1)当
【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分直角坐标方程,根据参数几何意义得详解:(1)曲线的直角坐标方程为当当
时,的直角坐标方程为时,的直角坐标方程为
.
与
两种情况.(2)将直线参数方程代入曲线的,即得的斜率.
时,的直角坐标方程为
,求的斜率.
,当
时,的直角坐标方程为
.(2)
之间关系,求得.
,
(2)将的参数方程代入的直角坐标方程,整理得关于的方程
.①
因为曲线截直线所得线段的中点又由①得
,故
在内,所以①有两个解,设为,,则
,于是直线的斜率
.
.
点睛:直线的参数方程的标准形式的应用 过点M0(x0,y0),倾斜角为α的直线l的参数方程是若M1,M2是l上的两点,其对应参数分别为t1,t2,则
(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α). (2)|M1M2|=|t1-t2|.
(3)若线段M1M2的中点M所对应的参数为t,则t=(4)若M0为线段M1M2的中点,则t1+t2=0. 23. [选修4-5:不等式选讲] 设函数 (1)当
.
时,求不等式
的解集;
.(t是参数,t可正、可负、可为0)
,中点M到定点M0的距离|MM0|=|t|=.
(2)若【答案】(1)
,求的取值范围.
,(2)
【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为取值范围. 详解:(1)当
时,
可得(2)而由
可得的解集为等价于
,且当或
. .
时等号成立.故
等价于
.
.
,再根据绝对值三角不等式得
最小值,最后解不等式
得的
,所以的取值范围是
点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.
正在阅读:
2018年高考真题 - 理科数学(全国卷II)+Word版含解析05-04
2014年唐山农信社复习备考资料模拟试题行测言语练习题(11)03-08
2015朝阳一模 北京市朝阳区2015届高三4月第一次综合练习数学文试04-10
幼儿园2017-2018学年度第二学期课题工作计划12-19
新人教版数学四年级下册5.2三角形的分类课时练习A卷05-19
(17三3)教研员如何引领校本研修工作(校本新讲座三之3)05-16
月经期喝什么汤水比较补身05-16
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 真题
- 理科
- 解析
- 数学
- 高考
- 全国
- 2018
- Word
- II
- 重庆市领导干部法治知识考试练习题
- 《教育心理学》有关理论、代表人物及著作等
- 浙江2011年1月高等教育物业管理实务自考试题
- 二年级语文下册三疑三探教案
- 精密仪器仪表修理工岗位工作总结汇报报告范文模板
- 七年级政治上册《第2单元 认识新自我》复习课
- 湖北桂花省级森林公园总体规划
- 2015年国家公务员考试备考申论热点及作答方法集锦(55)
- 中国抽纱刺绣工艺品市场调研报告
- 舞林风青春舞蹈风采大赛策划书
- 部编本小学语文二年级下册1-8单元试题(含期中期末各2套) - 图
- 美国著名八大刑事案件
- 一次函数复习导学案(暑假)
- 黑方实时数据备份与恢复系统
- 浅谈建立价格管理体系在企业经营中的重要作用
- 煤矿安全管理课程授课教案 - 图文
- 生活垃圾填埋场渗滤液处理综述
- 北京科技大学材科基考研(名词解释汇总及课后重要习题) - 图文
- 市政桥梁预应力施工技术的应用研究
- 国际贸易实务计算题