The galaxy populations from the centers to the infall regions in z~0.25 clusters
更新时间:2023-06-04 18:40:01 阅读量: 实用文档 文档下载
- the推荐度:
- 相关推荐
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Astronomy&Astrophysicsmanuscriptno.8735April17,2008
cESO2008
Thegalaxypopulationsfromthecenterstotheinfallregionsin
z≈0.25clusters
M.Verdugo1,B.L.Ziegler1,2,3 andB.Gerken4
1
arXiv:0709.4508v3 [astro-ph] 17 Apr 2008
234
Institutf¨urAstrophysikG¨ottingen,Georg-AugustUniversit¨atG¨ottingen,Friedrich-Hund-Platz1,37077,G¨ottingen,Germanye-mail:mverdugo@astro.physik.uni-goettingen.de
EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse2,85748,GarchingbeiMuenchen,GermanyArgelander-Institutf¨urAstronomie,Universit¨atBonn
OxfordAstrophysics,DepartmentofPhysics,UniversityofOxford,KebleRoad,Oxford,OX13RH,UK.
ABSTRACT
Context.Inthelocaluniverse,therelativefractionsofgalaxytypesdi ersingalaxyclustersincomparisontothe eld.Observationsathigherredshiftprovideevidencethatclustergalaxiesevolvewithlookbacktime.Thiscouldbedueeithertothelateassemblyofclusters,whichispredictedbybottom-upscenariosofstructureformation,ortocluster-speci cinteractionprocesses.
Aims.Todisentanglevariouse ects,weexploretheevolutionarystatusofgalaxiesfromthecenterofclustersouttotheirinfallregionsinz≈0.25clusters.
Methods.WeconductedapanoramicspectroscopiccampaignwithMOSCAattheCalarAltoobservatory.Weacquiredlow-resolutionspectraofmorethan500objects.Approximately150ofthesespectrawereofgalaxiesthataremembersofsixdi erentclusters,whichdi erinintrinsicX-rayluminosity.Thewavelengthrangeallowsustoquantifythestarformationactivitybyusingthe[Oii]andtheHαemissionlines.Thisactivityisexaminedintermsofthelarge-scaleenvironmentexpressedbytheclustercentricdistanceofthegalaxiesaswellasonlocalscalesgivenbythespatialgalaxydensities.
Results.Thegeneraldeclineinstar-formationactivityobservedforgalaxiesinsidenearbyclustersisalsoseenatz≈0.25.Aglobalsuppressionofstar-formationisdetectedintheoutskirtsofclusters,atabout3Rvirial,wherethegalaxydensitiesarelowandtheintra-clustermediumisveryshallow.Galaxieswithongoingstar-formationhavesimilaractivity,regardlessoftheenvironment.Therefore,thedeclineofthestar-formationactivityinsidetheinvestigatedclustersisdrivenmainlybythesigni cantchangeinthefractionofactiveversuspassivepopulations.Thissuggeststhatthesuppressionofthestar-formationactivityoccursonshorttimescales.Wedetectasigni cantpopulationofredstar-forminggalaxieswhosecolorsareconsistentwiththered-sequenceofpassivegalaxies.Theyappeartobeinanintermediateevolutionarystagebetweenactiveandpassivetypes.
Conclusions.Sinceasuppressionofstar-formationactivityismeasuredatlargeclustercentricdistancesandlowprojecteddensities,purelycluster-speci cphenomenacannotfullyexplaintheobservedtrends.Therefore,assuggestedbyotherstudies,groupprepro-cessingmayplayanimportantroleintransforminggalaxiesbeforetheyenterintotheclusterenvironment.Sincemodelspredictthatasigni cantfractionofgalaxiesobservedintheoutskirtsmayhavealreadytransversedthroughtheclustercenterandintraclustermedia,thee ectsofram-pressurestrippingcannot,however,beneglected;thisis,inaddition,truebecauseram-pressurestrippingmayevenbee ective,undercertainconditions,insidegroupenvironments.
Keywords.galaxies:clusters:general–galaxies:evolution–galaxies:stellarcontent–galaxies:distancesandredshifts
1.Introduction
ThestudyofthegalaxypopulationinsideclustersdatesbacktoHubble(1936),whonotedthatclusterofgalaxiesaredomi-natedbyellipticalandlenticulargalaxies,andthesurrounding eldbyspirals.Severalmodernstudieshavequanti edthisef-fect(e.g.Dressler1980;Gotoetal.2003),whichisnowknownasthemorphology-densityrelation.IthasbeensuggestedthatspiralgalaxiesarebeingtransformedintoS0sbycluster-speci cprocesses.FurtherevidenceisprovidedbyDressleretal.
(1997),
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
2Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters
Although,modelspredictthatwhenagalaxyquenchesitsstar-formationitmovesontothered-sequencequiterapidly(~400Myr,Harkeretal.2006).Evidenceofthisisprovidedbythestrongbimodalityobservedingalaxycolors(e.g.Baloghetal.2004b),whichcannotbesimplyexplainedother-wise.
Thequestionabouttheenvironmentaldependenceofgalaxyphysicalpropertiescanbeaddressedbystudiesthatusemorereliableindicators,suchasemissionlines.Thosestud-ies ndstrongcorrelationsbetweenstar-formationactivityandgalaxyenvironment(e.g.Baloghetal.1999;Lewisetal.2002;G´omezetal.2003;Pimbbletetal.2006;Hainesetal.2007).Furthermore,theserelationsdonotappeartodependonthemassofthesysteminwhichthegalaxiesareembedded(Popessoetal.2007).
SincethehierarchicalmassassemblywithtimeisanaturalpredictionofΛCDMcosmologies,itisobvioustolinkthede-clineofthevolume-averagedstar-formationrate(Hopkins2004andreferencestherein)andthegalaxyevolutioningeneraltothegrowthofstructure.However,therelativeimportanceofthedi erentprocessesthatact,isnotyetclear.
Observationssuggestthat,atleast,twodi erentphenomenaarerequired.Oneprocessactsonthestellarpopulationstotermi-natethestar-formationactivityandanotherprocesschangesthegalaxystructure.Ram-pressurestripping(e.g.Quilisetal.2000)isknowntobeverye ectiveinremovingthegalaxycoldgasandthusquenchingthestar-formationactivity,butonlyworksunderspecialconditionspresentinclustercoreswheretheintra-clustergasdensityandtherelativegalaxyvelocitiesarehigh.Thesoftervariantofram-pressurestripping,strangulationorstarvation(e.g.Bekkietal.2002),removesthethingaseoushalopresentaroundgalaxies,andthestar-formationcontinuesuntiltheremainingdiskgasisconsumed.
Otherpossiblemechanismsaregalaxy-galaxymergingandlow-velocitygalaxyinteractionsthattriggeranepisodeofhighstar-formation,whichconsumesahighfractionofgasinashorttimeandmaystripptheremainingviagravitationalshocksandfeedbackprocesses(rson&Tinsley1978;Bekki2001).Thismayprovideexplanationtomodernobservationswherethedecreaseofstarformationactivityhasbeendetectedalreadyatverylowgalaxydensities(Lewisetal.2002;G´omezetal.2003).However,othermechanismsarenecessarytoexplainthechangeinmorphology.Mergersareknowntobee cientinchanginglate-typegalaxiesintoellipticals(Toomreetal.1977;Hernquist1992),buttherelativevelocitiesmustbelow,whichisnotthecaseinclusters.Butthegalaxystructurecanbechangedonlongertimescalesbyharassment(Mooreetal.1998)duetohigh-velocityencountersbetweenclustergalaxies(seealsoGnedin2003).
Despitetheaccumulationofobservationalevidenceovertheyears,thelinkbetweenthegrowthofstructurewithtimeandgalaxyevolutionremainselusiveandthefundamentalquestionsremainunanswered.Howrapidlyandsigni cantlyissupressedthestar-formationactivityininfallinggalaxies?Whatexactlyistheenvironmentaldependenceofthestar-formationactivity?Isitsuppressedmainlyduetolocalorglobalprocesses?Whatisthepredominantmechanism?
Studyingclustersathigherredshiftmayprovidenewcluesabouttheprocessesinvolved,becausetheglobalstar-formationactivitywashigherinthepastandclustersshowatallredshiftmuchloweractivitywhencomparedwiththesurrounding eld(e.g.Baloghetal.1999).Modelsalsopredictthatinthepastthegalaxy-infallingratemusthavebeenhigher(e.g.Bower1991).Theprocessesatworkmustthereforehavebeenincreasingly
moree ectiveatincreasinglyhigherredshift,andathigherred-shifttheprobabilityofobservingtheprocessesinaction,in-creases.
Severalstudiesathigherredshifthavefocusedonthecentralpartsofclusters(e.g.Baloghetal.1999,2002a;Poggiantietal.2006),but,asstudiesatz≈0show,therelationbetweenstar-formationactivityanddensityisalreadydiscernibleatlowgalaxydensities,insidetheinfallingregionswherethegalaxies,whichareinfallingfromthe eld,maybegintoexperiencethein uenceofcluster,andinteractionsbecomemorefrequent.
Eveninthedistantuniverse,clustersofgalaxiesprojectalargesolidangle,andwide- eldobservationsarethereforere-quired.Thecontaminationduetoforegroundandbackgroundobjectsislarger,
Wereporttheresultsofaprojecttostudygalaxyevolutionfromtheinfallingregionstotheclustercenters,coveringpro-jectedradialdistancesoutto4virialradiiforsixclustersat byz Gerken≈0.25.etFirstal.(2004).resultsforInSect.twoclusters2wedescribewerealreadytheobservationspublishedaswellasthemethodusedtomeasuretheimportantparametersofthegalaxies.InSect.3wedescribeclusteridenti cationandothergeneralpropertiesincludingtheenvironmentalde nition.InSect.4wedescribeindetaileachobserved eld.InSect.5weshowthemainresults,discussingtheirimplicationsinSect.6.InSect.7weexploresomepropertiesofthestar-formingpopula-tion.OursummaryandconclusionsareprovidedinSect.8.
Throughout1thispaper,weuseacosmologyofHMpc 1, .3and 0=70kms m=0Λ=0.7.
2.Thedata
2.1.Clusterselection
ThesamplewasselectedfromtheX-rayDarkClusterSurvey(XDCS,Gilbanketal.2004)whoseaimwastocompareX-rayandopticalidenti cationalgorithmsofclusters.Forthispur-pose,deep,opticalimagingofRIXOS elds(Masonetal.2000)wasacquired,whichwereimagedintheX-raybytheROSATPositionSensitiveProportionalCounter(PSPC).SomeoftheX-raydatawerealsoanalyzedbyVikhlininetal.(1998),andlaterbyMullisetal.(2003),fromwhichtheX-ray uxesweretaken.TheXDCSprovidesuswithVandI-bandphotometrytakenwiththeWideFieldCamera(WFC)attheIsaacNewtontele-scope(LaPalma,Spain).Thiscamerahasa eldofview(FOV)of34×34arcmin.
Weselectedforfollow-upspectroscopythree eldscontain-ing,inprojection,twoclusterseach,thusincreasingtheprob-abilityoftargetingaclustermember.TheclustershaveawiderangeofX-rayluminositiesandprobablydi erentevolutionarystates.Theyareatsimilarredshifts,makingthemgoodcandi-datestoprobeevolutionuniquelyduetoenvironmentale ectsatacosmologicalepochwithlook-backtimesof~3.0Gyr.
AsummaryoftheclusterpropertiescanbefoundinTable1.Detailsofhowthedi erentquantitieswerecalculatedarede-scribedintheforthcomingsections.2.2.Observations
Thespectroscopywasperformedwiththemulti-objectspectro-graphMOSCA1mountedatthe3.5meterstelescopeatCalarAltoObservatory(Spain).Theseobservationswerecarriedoutintworuns,from10to15Februaryand20to24March,2002.
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters3
Table1.Mainparametersfortheclustersample.TheclusterdenominationscomefromVikhlininetal.(1998)(VMF)andGilbanketal.(2004)(XDCS).CoordinatesaregivenwithrespecttotheX-raycentroid.X-ray uxesaretakenfromMullisetal.(2003).Rvirialisthevirialradiusandσthevelocitydispersion.Nisthenumberofmembersidenti edineachcluster.
FieldClusterAlternativenameRADECz
fX
[10 14ergs/scm2]LX,bol
[1043ergs/s]σ[km/s]Rvirial[Mpc]
N
500,whichencom-
passesawidewavelengthrange,from4300Åto8200Å,allow-ingustostudyboththe[Oii]λ3727andtheHαemissionlines,atthetargetedredshifts,whicharecriticaltostudystar-formationactivityingalaxies.ThegrismprovidesaspectralresolutionofR~10 15Å,whichcorrespondsintherest-frameto8 12Å,forourslitwidthof1arcsec.
Theexposuretimesrangedbetweenoneandthreehoursde-pendingontheapparentmagnitudesoftheobjectsselected.Inafewcasesthesetimeswereincreasedtoaccountforvariationsintheweather.Themagnitudedistributionofthe nalsampleinFig.1.TheselectionofobjectsforspectroscopywasbasedonlyontheirI-bandmagnitudestoavoidanycolorbias.Additionalrestrictionswereimposedbymasksgeometry.
Intotal,537spectrawereacquired.Forouranalysis,wein-cludedinaddition21spectrafromourpreviousprojects“LowX-rayluminosityclusters”(Baloghetal.2002a)intheR265 eldand“X-darkclustersurvey”(Gilbanketal.2004)intheR220 eld.Thiswaspossiblebecausethosespectrawereob-servedusingasimilarinstrumentalsetup.However,wereex-aminedallspectratobeabletoapplythesamecriteriaforthewholesample.Finally,wefoundthat297spectraweresuitableforanalysis(seebelowfortheprecisecriteriaused).2.3.Datareduction
OurdatareductionproceduresweredescribedinGerkenetal.(2004)andcanbesummarizedbythefollowingsteps:Biassub-traction,extractionofindividualslits,correctionofthedistortioninducedbythefocalreducerinMOSCA, at- elding,skysub-traction,extractionoftheone-dimensionalspectra,wavelengthcalibration,andcombinationoftheindividualexposures.
Allofthesetaskswereperformedwithinthemidas2environ-ment,interactively,usingcustom-maderoutines.Eachspectrumwasvisually-inspectedtodetectpecularitiesthatmaya ectthemeasurements.
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
4Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25
clusters
Fig.1.Thecombinedselectionfunctionforthewholesample.ThehistogramsshowtheI-bandmagnitudedistributionforthephotometric(dashedredline)andspectroscopic(bluesolidline).Thepointsshowthefractionofgalaxiesforwhichwederivedredshifts.TheerrorbarsarePoissondistributederrors(Gehrels1986).
signi cantdi erenceinthedistributionofstar-formingversuspassivegalaxieswasobserved,withtheexceptionoftwofaintstar-forminggalaxies.2.6.Selectionfunction
Inall elds,onlyafractionofthegalaxiesbelowourspectro-scopiclimit(I≈19.5mag)wasobserved.Therefore,selectione ectsmaybepresentandneedtobecorrected.Thisisachievedbyconstructingaselectionfunction.However,aspartofthe eldswerecoveredbyadi erentnumberofslitmasks(somehadonlyone,otherstwo),andthegalaxydistributionisnotuni-formacrossthe eld,wedevelopedtwoselectionfunctionforeach eldtakenintoconsiderationthesee ects.
Theindividualselectionfunctionswerecalculatedbycount-ingthenumberofobjectswithsuccessfulspectroscopy(i.e.re-liableredshifts)versusthenumberofphotometricallydetectedobjectsuptothespectroscopiclimit(I≈19.5)insidetheareascoveredbythecorrespondingspectroscopicmasks,indi erentmagnitudebins.Nobackgroundcorrectionwasapplied,becauseweonlyneededtoknowtherelativenumberofphotometricallyandspectroscopicallyobservedgalaxiestoevaluatethesuccessofourspectroscopy(seealsoSect.2.4).Theresultingfunctionswereappliedtotheclustergalaxiesintheformofweightstothestatisticalpropertiesoftheclustergalaxies.ThecombinedselectionfunctionisshowninFig.1.However,sometestshaveshownusthattheresultsdependlittleontheweightingappliedandarerobustagainstotherconsiderations.2.7.Equivalentwidthsandstar-forminggalaxies
Weuseequivalentwidths(hereafterEWs)asameasureofthelinestrengthsoftheabsorptionandemissionlines.Wemea-suredEWsautomaticallyusingacustom-maderoutine,whichautomaticallycorrectsforthee ectsofcosmicexpansion.Inthecaseof[Oii]andHα,whichareusedastracersofongoingstarformation,weadoptedthede nitiongivenbyBaloghetal.(1999).Weadopttheconventionthattypicalemissionlines
are
Fig.2.V-bandapparentmagnitudeversuscontinuumsignal-to-noiseratioasmeasuredinSect.2.5.Openreddiamondsaregalaxieswithoutemissionlines,whereas lledbluediamondsaregalaxieswithatleastoneemissionline.
shownwithpositivevalueswhendetected,butalso,thattypicalabsorptionlines(e.g.Hδ)arepositiveinabsorption.
TheHαde nitionused,e ectivelyisolatesthetargetedlinefromtheadjacent[Nii](whichwasalsomeasured).Eachspec-trumwasvisuallyinspectedto ndoutwhetheranylinesfellintotheprominenttelluricbands(A&B),werea ectedbysky-subtractionresidualsorbyartifactsinthespectra.Insomecases,thelineswere aggedandnotusedinsubsequentanalyses.
UsuallytheminimumEWthatcouldbereliablymeasuredwas5Å(seeBaloghetal.2002aforademonstrationbasedonsimilardata),thereforegalaxieswithequivalentwidthsW0>5Å,eitherin[Oii]orHα(orboth),areconsideredstarform-inggalaxies.Wewillshowlaterinthispaper(inSect.7andintheAppendixA)thatthisclassi cationisrobustandphysicallymeaningful.
2.8.Absolutemagnitudes
Weusethesoftwarekcorrect(Blanton&Roweis2007)tocal-culatek-correctionsandthusabsolutemagnitudesforgalaxiesinourspectroscopicsample.ThiscodeisbasedonthelateststellarpopulationmodelsofBruzual&Charlot(2003)andphotoion-izationmodelsofKewleyetal.(2001).Asabyproductofthek-correction,thecodealsoderivesstellarmasses,whichwillbeusedinSect.7.
The eldsR265andR285werealsoimagedbySDSS3(Yorketal.2000),therefore,wecanusetheadvantageofmulti-colorphotometry.Unfortunately,theremaining eld(R220)wasnotobservedbytheSDSSandwehavetousetheavailableVandI-bandmagnitudesprovidedbyGilbanketal.(2004)andtherefore,largeruncertaintiesareexpectedinthecalculations.However,wecantesttheaccuracyofthemagnitudesbycom-paringtheresultsobtainedusingthetwo-bandphotometryandthemulti-bandphotometryintheothertwo elds.Forouranal-ysis,weobtainedB,VandRrest-frameabsolutemagnitudes(intheVegasystemusingJohnson- lterde nitions).
Wefoundscattersof~0.2magando setsof~0.15magbe-tweenthemagnitudesobtainedineitherway.Theo sets
depend
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters
5
Fig.3.Redshiftdistributionofthetargetsinthethree elds,withtheclusternamesmarked.The
smallarrowsmarkthepositionofthegroupcandidates(seeSect.4).
onredshiftandcanbecorrectedusingalinear tting.Thescat-terisinagreeswithvaluesfoundbyBlantonetal.(2005)fortransformationsbetweendi erent ltersystems.Thesedi er-encesaresmallandhardlychangetheconclusionsinthisstudy.Weselectedtheoriginalabsolutemagnitudescalculatedus-ingtheSDSSphotometryfortheR265andR285 eldsandap-pliedtheredshiftcorrectionforthegalaxiesinR220toonlythemagnitudesderivedusingtheVandI-bandphotometry.Allap-parentmagnitudeswerecorrectedforGalacticextinctionusingthemapsofSchlegeletal.(1998).Nocorrectionforinternalab-sorptionwasattempted,sincewedonothaveinformation,inmanycases,aboutgalaxyinclination,andtheBalmerdecrementcannotbeusedinallcasesbecauseHβisrarelydetectedforemissionlinesgalaxies,anduncertaintiesforpassivegalaxieswillremain.Noimportantdi erenceswerefoundbetweentheabsolutemagnitudedistributionsforthe eldandclustersam-ple.
ThestellarmassesweretestedagainsttheformulaeofBelletal.(2005)usingourrestframeBandV-bandmagnitudes.Wefounddeviationsonlyatthehighmassend.Sincethekcor-rectcodeisreliableinpredictingmagnitudesbetweentheSDSSandoursystem,wepreferredtouseitsdataoutputs.
3.Theclusters
3.1.Clustermembership
Ineach eld,theredshiftdistributionwasanalyzedtodetectprominentstructures.Theclustersstudiedhadalreadyknownredshifts,withtheexceptionofthoseintheR220 eldwhoseredshiftswereunclear(seeSect.4fordetails),butwerecon- rmed.Themeanclusterredshift(z)andvelocitydispersion(σ)werecalculatedusingthebi-weightestimatorsofBeersetal.(1990)anditerativelyexcludinggalaxiesbeyond3-σofthemeanredshiftuntilthesolutionconverged.Weappliedaboot-
Fig.4.Color-magnitudediagramsofthemembersofthesixob-servedclusters.Filledbluediamondsarestar-forminggalaxies,whereasopenreddiamondsarepassivegalaxies.Theshadedar-easarede nedbythe3-σdeviationoftheleastsquares tstothepassivegalaxies.TheverticaldashedlinemarkMusedinthedensitycalculation(seeSect.3.5).WenoteI≈the 21red.4star-forminggalaxiesbelongingtothered-sequenceandevenredderinsomeoftheclusters.
strappingtechniquetocheckthestabilityoftheresultsandcal-culatetheerrorsinthevelocitydispersion.TheresultscanbefoundinTable1andtheredshiftdistributioninFig.3.3.2.Galaxycolors
Weusethespectroscopicinformationtoseparatethegalaxypopulation.Galaxieswithemissionlinesareconsideredstar-formingandthosewithoutemission,passive(seeSect.2.7).PlottingtheV IcolorversusI-bandmagnitude(Fig.4)forclustergalaxiesshowsthatallclustershaveclearred-sequences.Onlyfewclustergalaxieshavebluecolorsbutnoemissionlines.
Thedistributionofthepassivegalaxies,thered-sequence,iswelldescribedbysimpleleast-squares ts.Theweightedmeandispersionofthered-sequencesisσ≈0.05mag,whichisthetypicalerrorinthephotometry.Allgalaxiesredderthanthelower3-σlimitareconsideredredgalaxies,andblueotherwise.Giventhiscriterion,wenotetheexistenceofapopulationofredstar-forminggalaxiesbelongingtothered-sequenceandevenredder.Morestrikingisthehighnumberofthosegalaxiesbe-longingtotheclusterVMF74.Someofthecharacteristicsofthissub-populationwillbedescribedinSect.7.3.3.X-rayluminosities
TheX-rayluminositiesoftheintraclustermediumandclustervelocitydispersionsareindicatorsofclustermasses.Thecorre-lationbetweenthesetwoparametershasbeenextensivelystud-ied(e.g.Markevitch1998;Davidetal.1993;Xue&Wu2000)andisinterpretedasasignofdynamicalequilibrium,even
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
6Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25
clusters
Fig.5.
BolometricX-rayluminosityplottedagainstvelocitydis-persion.Opencircles(Markevitch1998),crosses(Davidetal.1993)andstars(Xue&Wu2000)representtheLforlocalclusters.ThesixclustersstudiedhereareplottedX-σrelationasdi-amondswitherrorbarsinthevelocitydispersion.
thoughthelargescatterinthelocalrelationindicatesdeviationfromthisequilibrium.Nevertheless,laterstudieshavefoundthatclustermassesderivedfromusingindependentmethods,includ-inggravitationalweak-lensing,correlatewithrelativesmallscat-ter(e.g.Hicksetal.2006),solvingalong-standingcontroversy.InFig.5,weplotthebolometricX-rayluminositiesagainstthederivedvelocitydispersions.TheclustersfollowthelocalLisXunderluminous σrelation,withfortheitsnotablevelocityexceptiondispersion.ofXDCS220,Thisclusterwhichdis-playsatailintheredshiftspace,whichcomplicatesthecalcu-lationofthevelocitydispersionandimplies,therefore,thatitislikelyoverestimated.
Inaddition,VMF194ispeculiar,becauseithasavelocitydispersionthatistoolowforitsX-rayluminosity.Thise ectmaycomefromtwodi erentsources.First,σmaybeunderesti-matedduetoselectione ectsgiventhelownumberofmembersidenti ed.Second,wedetectabackgroundgroupatz≈0.24ofarelativelargevelocitydispersion(seeSect.4.1),whichmayhavecontaminatedtheX-raymeasurements.Nevertheless,thisclusterdoesnotappeartobesoextremelyo setfromtheLrelationasXDCS220.
X σWiththeexceptionofXDCS220,theclusterX-rayluminosi-tiesandvelocitydispersionsaresimilartothoseofVirgo,A496andComaclusters(e.g.Davidetal.1993;Rinesetal.2003)andthusareexpectedtobeclustersthatareasequallymassive.3.4.Virialradius
Fromtheresultsshownintheprevioussection,itispossibletoassumethattheclusterssampledinthisstudyareingen-eralindynamicalequilibrium4andtherefore,thevirialtheoremisapplicable.Theradiuswithinwhichthevirialmassisesti-matedtobecontainediscalledthevirialradius.Accordingtotheobservationally-calibratedderivationsofCarlbergetal.(1997),Rvirialisde nedasthedistancewherethemeaninnerclusterdensityis200timesthecriticaldensity
4
ItisprobablynottrueforXDCS220,howeverforthesakeofcom-parisonitwillbeassumedthatitis.VMF194isalsopeculiar,butthedi erencesmayarisefromanothersources.
Fig.6.Relationbetweenvirialradiusandprojecteddensitybe-foreandaftercorrectionfor eldcontamination.Theopenredcirclesarepassivegalaxies,whereas lledbluecirclesarestar-forminggalaxies.
itisalsocalledr200.Itsrelationtothevelocitydispersionσisgivenby
Rr√
σ
virial=200=
10 1 m(1+z)3+ =0.7andλforaHubbleconstantof
H0=70kmsMpc 1, λ Rm=0.3.
Sincer200(virial)characterizesthesizeofclustersfollow-ingtheassumptionofauniversalmasspro le,itisusefulasanenvironmentalindicatorofmassdensity,giventheclustercentricdistancesofclustergalaxies.Thereforethedistancesofgalax-iestothecenteroftheclusterarenormalizedbytherespectiveclustervirialradius,allowingtheentiresampletobecombinedintoasinglecluster,increasingthestatisticalsigni canceofouranalysisandreducingthee ectsofcluster-to-clustervariations.3.5.Projecteddensity
Anothercommonindicatorofenvironmentisthelocalnum-berprojected(2-D)densityofgalaxies.Itscalculationdoesnotmakeanyassumptionaboutthephysicalpropertiesoftheclus-ters,butotherprecautionsmustbetaken.First,thegalaxynum-berdensityisafunctionofluminosity.ThespectroscopiclimitofI≈19.5magcorrespondstoMmostcluster(z≈0.3)andMI≈ 21.4forthefurther-(z≈0.2),takinginconsiderationI≈the typical20.2fork-correctionstheclosest(seeoneFukugitaetal.1995).
Foreachcluster,thephotometriccatalogwasdividedusinganapparentmagnitudethatcorrespondsonaverage,tothelumi-nositylimitofthemostdistantcluster,whichtranslatesintoanapparentmagnitudecutofI≈18.3atz=0.18(seeFig.4).
Theprojecteddensityisde nedbytheareathatencirclesthe fthnearestneighbortothisgalaxy,whichisreferredasΣ5.However,signi cantforegroundandbackgroundcontami-nationisexpectedandmustbecorrectedbeforecompletinganystatisticalanalyses.Intheliterature,severalmethodsofdi er-entcomplexityaredescribedtodealwiththisproblem.Mostofthemsubtractavalue(localorglobal)fromthecalculateddensity,makingdi erentassumptions.However,thosemethodsoftenyieldunphysicalvalues(i.e.negativenumbers)fortheden-sityestimates.Ourcaseisevenmorecomplicated,becausewedonotonlyhave eldcontamination,butalsocontaminationfromtheotherprojectedcluster.Therefore,wechoseanotherap-proachusingincombinationthephotometricandspectroscopicdata-set.
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters
7
Fig.7.Representationofthe eldsoftheobservedclustersasindicatedbythenamesontheindividual gures.Onlyclustermembersareshown.Blue lledandopenredsymbolsrepresentstar-formingandpassivegalaxiesrespectively.Theclustercentersaremarkedwithlargeverticalcrossesandthelargeconcentriccirclesrepresentoneandtwovirialradiirespectively.Thecontoursarethedensitymapsofallgalaxieswithcolorscompatiblewiththered-sequenceoftherespectivecluster(seeSect.4).ThearrowsintheVMF194plotindicatethepositionofarichbackgroundgroup(seeSect.4.1).IfthetruenumberdensityofgalaxiesinacertainregionoftheclusterisN(unknown)andtheobservedisM(determinedfromthephotometriccatalogandincludingthecontamination),onehasarelativefractionoff=N/M.Fromthespectroscopicdataset,weknowthattherearengalaxiesbelongingtotheclus-terandmisthenumberoftotalobservedgalaxiesinthesameareawithsecureredshifts.Sincetheselectionwasperformedrandomly(basedonlyonI-bandmagnitudes),wecanassumethatwehavethesamefractionexpressednowbyf=n/m,thus
wecancorrecttheobservedvalueM,multiplyingitbyn/m,ob-tainingN.
Theareasusedtomakethesecorrectionsarelargerthantheareasconsideredbytheindividualdensitycalculations.Theyen-circlealways10galaxieswithsecureredshifts,andwecountthenumberofclustermembersversusthenon-clustergalaxies.Havingahigh- llingfactorhelpstothestatisticalreliabilityofthissimplemethod,becausetheareassampledwillhavesmallerphysicalsizesandthussmallerdeviationsfromthelocaldensity.TheresultsofthecorrectioncanbeseeninFig.6.Afterthispro-
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
8Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25
clusters
Fig.7.continued.Representationoftheobservedclustersasindicatedbythenamesontheindividual gures.Onlyclustermembersareshown.Blue lledsymbolsarestar-forminggalaxiesandopenredarepassiveones.ThearrowsinVMF73showthepositionoftheX-raystructuredetectedbyRasmussen&Ponman(2004)(seeSect.4.3).cess,acorrelationbetweenvirialradiusandprojecteddensitybecomesevident.
Wewouldliketoemphasizethatthedensitiescalculatedherearenotdirectlycomparabletothosecalculatedelsewhere,be-causethemagnitudecutsandapproachestosubtracttheback-groundvarybetweendi erentauthors.
Finally,galaxiesfainterthantheindividualclustermagni-tudecutwerenotincludedinthecompositecluster;thisreducedthe nalsamplesizeto~120galaxies.Wenotethat,manyofthegalaxiesexcludedarememberoftheVMF74cluster.
ti edmembersareactuallyassociatedwithstructuresthatshowupusingthissimplecolorcut.4.1.R220
4.Descriptionofthe elds
Wedescribeeach eld,providingdetailinparticularofthegen-eralclusterproperties,candidategroups,andclustersubstruc-ture.EachclusterisrepresentedseparatelyinFig.7,withdif-ferentsymbolsforstar-formingandpassivegalaxies.ThelargeconcentriccirclesrepresentoneandtwovirialradiirespectivelycalculatedaccordingtoEq.1.
ThecontoursshowthedistributionofallgalaxiesdowntoI=23magwithcolorssimilartotherespectivered-sequences(seeFig.4).Theyprovidesomeinformationaboutthespatialdistributionofgalaxieswithoutspectroscopy.SincetheCMRforellipticalshaslittlescatter,thestructuresareprobablyatsimilarredshifts.Thistechniquehasbeensuccessfullyusedbyotherstudiestodetectsubstructuresaroundclusters(e.g.Kodamaetal.2001;Tanakaetal.2005).Inthiscase,however,itisnotpossibleto rmlystatethesigni canceofthosestructuresbecauseonlytheV Icolor,providedbyGilbanketal.(2004),isusedandthered-sequencesofeachprojectedclusterhavesimilarcolors(seeFig.4).TheuseoftheSDSSmulti-colorphotome-trydoesnothelpbecausetheiruncertaintiesarelargeratfaintluminositiesandthered-sequencesbecomecompletelyblended.Therefore,thecontoursplottedineach guremustbetakenonlyasinformative.Nonetheless,manyofthespectroscopicallyiden-
TheR220 eldisaverycomplex eld.Thereis, rst,alargernumberofobjectsthanintheother elds.Thisismaybeduetoitslowergalacticlatitude.Ourphotometriccatalogwascleanedofstar-likeobjects,but,theseparationisnotperfectandmanyofourslitsunintentionallycontainedstars,losingtheadvantageofhavinganextramaskforthis eld(8insteadof7).Theredshiftdistributionalsolooksmorecomplex(seeFig.3),withanumberofassociationsbesidesthetwoclusters.
TheclusterVMF194wasfoundtobedi culttocon rmop-ticallybyVikhlininetal.(1998)andcollaborators.AccordingtoGilbanketal.(2004),theproposedclustercorrespondsto“averyextendedX-rayemissionandthegalaxyover-densityissimilarlyextended”.Here,VMF194at z =0.210(seeTable1)wasunequivocallydetected,butthedataobtainedshowedthattheclusterhasasurprisinglylowvelocitydispersionforitsX-rayluminosity(seeFig.5).Threeadditionalgalaxieshaveredshiftsthatimplyclustermembership,accordingtothepreviously-measured3-sigmalimits;thesegalaxiesarelocated,however,atlargeclustercentricradii(>7Rvirial).Whentheyareincluded,thevelocitydispersiondoesnotchangesubstantially,andthustheywereexcludedasmembers,butnotincludedinthe eldsample.
Atanangulardistanceof~4.4arcminofVMF194(i.e.al-mostoverlappingpositions),wedetectaclumpofgalaxiesatredshift z =0.243.Thisclumpalsoshowsupinthespatialdis-tribution:8outofthe11galaxiesareclusteredinanareasmallerthan~0.3×0.7Mpc.Thevelocitydispersionofthisgroupisσ=401±74km/s,indicatingthatitmaybequitemassive.Nored-sequenceisdetectedand4outofthe8galaxies,showstar-formingactivity.Thisgroupmayhavebeenthecauseofconfu-
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters9
Table2.Mainparametersforthegroupscandidatesforour elds.Theiridenti cationcodesshowtheaveragepositionsofthemembers.Meanredshifts(z)andaveragedeviationsareshownasvelocities(σ).Thebiweightestimatorswereusedonlyingroupswithatleast8members.Thegroupnumberidentifymembergalaxiesintheonlinetable.
GroupID
z σN[kms 1]1J172604+742830
0.053
126
4
2r220
3J172958+7442040.243
401
8(11)
4
r265
sioninallpreviousstudiesinthis eld.Infact,theconcentrationofgalaxiesismoreprominentfor
thisgroupthanforVMF194whenselectedbyacolorcut(seeFig.7).
Wecon rmthepresenceoftheclusterat z =0.261detectedbyGilbanketal.(2004),whichistherereferredasXDCScmJ172333+744410(itiscalledhereXDCS220forshort).Wecon rmtheredshiftcalculatedthere.ThisclusterhasaverylowX-rayluminosityandpassedundetectedintheX-rayanalysisofVikhlininetal.(1998)andMullisetal.(2003).Itdisplaysalargevelocitydispersion(seeTable1),whichisprob-ablyoverestimatedbecauseoftheexistenceofatailinredshiftspace.Excludingmembersthatarelocatedatlargeclustercentricdistancesdoesnotchangethebiweightestimateofthevelocitydispersion.Weconcludethatitisarealfeatureofthecluster,whichisprobablyintheprocessofrelaxingorhasanextendedstructurealongthelineofsight.Thisclustershowsaclearred-sequenceand5out14galaxiesshowongoingstar-formingac-tivity.
Twoothergroupcandidateswerefound(seeTable2),oneat z. 3×=00.7.04293Mpc),(all±390beingkmstar-forming/s)with6membersgalaxies,inand1Mpc2(or5in0theotherisat z =0.05274(±126km/s),withfourmembersin0.3×0.4Mpc.4.2.R265
ThecentralpartsoftheclusterVMF131werepreviouslyob-servedbyBaloghetal.(2002a)aspartoftheirlowluminosityX-rayclusterproject,whereitwasknownasCL1309+32,usingthesameinstrumentandsetup;wehavethereforeaddedtheirdataintoourstudy.Since,itisthemostdistantclusterstudied,wewereabletodetectmembersuptoclustercentricdistancesofR>4Rclustervirial.ThecolorcontoursshowslittlesubstructurearoundthebutthecentraloverdensityisclearlyvisibleinFig.7.TheclusterVMF132istherichestclusterinoursampleandhasthelargestvelocitydispersionandthusthelargestvirialra-dius,occupyingalargeproportionofthe eld.Inspiteofthis,thegalaxyconcentrationisclearlyirregularwhencolorcutsareappliedandonlysparsestructuresaredetected.
Anextendedgroupwasalsodetectedat z =0.186±0.001185(349km/s)with8membersinanareaof1×2Mpc,or0.7×1.5Mpcifoneexcludesonegalaxy.4.3.R285
Thetwoclusterspresentinthis eldalmostoverlapintheirpo-sitionsonthesky(angularseparation~5arcmin,seeFig.7).Inaddition,weplacedmoremasksinthecentralpartsoftheclus-ters,whichledtoahighersuccessratecomparedwiththeother elds.TheclusterVMF73atz=0.254hasthelargestnumber
Fig.8.Fractionofblueclustergalaxies(asde nedinSect.5.1)againstnormalizedvirialradiusandprojecteddensity.ofmembersidenti ed(N=44).Mostoftheidenti edmembersofthisclusterarelocatedinside1RturerunningapproximatelyintheEast-Westvirial,inanelongatedstruc-direction.Infact,whengalaxiesareselectedbythecolorsofthered-sequencethisstructureisclearlyvisible.Unfortunately,theforegroundclus-ter(VMF74)hasaCMRwithverysimilarcolors(seeFig.4)anditisnotpossibletoseparateclearlybothclustersusingthistechnique.
Theclustercenterisapproximatelyatthemiddleofthisstructure,butinoneextreme,2atadistance~1Rvirial,acompactgroup(100×100kpc)ofbright,passivegalaxiesisfound.TheirpositionscoincidewiththeextendedX-raysourceXMMJ0943.9+1641detectedbyRasmussen&Ponman(2004).TheX-ray uxofthisstructureisfprivatecommunication),X,1 2keV=3×10 14ergcm 2s 1(Rasmussen,whichyieldsanX-rayluminosityLX,bol=1.38×1043ergswiththeVMF73 1,assumingthattheX-raystructureisassociatedcluster.Thisstructuremaybethecenterofalarge,newlyinfallinggroupofgalaxies,althoughnopeculiaritiesweredetectedintheredshiftdistribu-tion.
TheclusterVMF74hasasurprisinglylargenumberofstar-formingmembers:19outof34,andmanyofthemhavecolorssimilartotheredsequence(seeFig.4).Itisalsotheclosestoftheclustersstudiedwithameanredshiftofz=0.18.Thespectroscopically-identi edmembersarealsodistributedinaelongatedstructureinanalmostNorth-Southdirection,althoughlessclearthaninVMF73.Italsoshowsupusingcolorcuts.Theclustercenterliesatthenorthernextremeofthisstructure.
AccordingtotheXMM–NewtonX-rayanalysisofRasmussen&Ponman(2004),bothVMFclustersdonotexhibitpeculiaritiesandarefairlytypicalfortheirmasses.4.4.Fieldsample
The eldsampleconsistofallgalaxiesbetween0.15<z<0.35,withatleast6-σofdistanceintheredshiftspacefromtheclusters.Weincludedthegalaxiesbelongingtothesuspectedgroups.Sincethesampleisbuiltusingthesameobservationsanycomparisonisstraightforward.Thesameredshift-dependentmagnitudecutshavebeenapplied,whichyields97galaxiesusedfordirectcomparison.Throughoutthispaper,manyquantitieswillbecomparedwiththoseofthissubset.
5.Analysisofthecompositecluster
5.1.Galaxycolorsandenvironment
InFig.8,weplotthefractionofbluegalaxies(asde nedinSect.3.2)againstourenvironmentindicators.Weobserveanin-creaseinthefractioninbothcasestowardslargeradiusandlow
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
10Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters
densityregions,howeveranotablepeakinsideR<1RInthehigh-densityregions,thefractionremainsvirialisobserved.lowandisstatisticallysimilarforclustersatthoseredshifts(e.g.Ellingsonetal.2001).
Theshapesofthosetrendsaresimilartothefractioncalcu-latedusingemissionlinesasindicatorsofstar-formationactivity(Fig.9),whichshouldnotbesurprisingsincebluercolorsoftenre ectthepresenceofyoungstellarpopulations.However,thereisanimportantfractionofstar-forminggalaxieswithredcol-ors,andinprincipleitmaybreakdownthepreviousrelation.Theyonlyappeartoa ectthefractionvalue,i.e.thebluefrac-tionislowerthanthestar-formingfractionat xedclustercentricdistancesanddensities,butnottheshapeofthetrends.Wein-vestigatethisfurtherinforthcomingsections.
ThefractionofbluegalaxieswascalculatedoverthenearestNgalaxiestoeachpointintheplane,i.e.insideamovingboxcontaininga xednumberofobjects,centeredoneachgalaxy.MakingthenumberNtoosmallincreasesthenoise;makingittoolargeshortensthedynamicalrangecovered,becausethismethodtruncatestheextremitiesofthelists.Itwasfoundthatusingthenearest15–25pointsisagoodcompromisebetweenspatialcoverageandstability.
Tocheckthestatisticalsigni cance,abootstraptechniquewith2000iterationswasappliedtoeachvalue,takingthemeanandthestandarddeviationofthebootstrappedvalues(checkingpreviouslyifthedistributionsarecompatiblewithGaussian)asthe nalvaluesandtheirerrors,respectively.
Noisecanincreaseordecreaseasoneincludesmoreorfewerpointsinthecalculations,buttheoverallshapesofthecurvesdonotchange,asforthecaseofchoosingarbitrarybins.Thisisparticularlyimportantinsmallsamplesandeventuallyunderthee ectsofsubstructure.Thebootstrappingmethodhelpstochar-acterizethecon denceregion.ThisprocedureisappliedinallsimilarstatisticalanalysesinthisworkAsa nalvisualproce-dure,thelinesweresmoothedwithsimplespline ts;however,thisprocedure,however,onlyeraseslocalscalevariations.5.2.Starformationactivityandenvironment
Weinvestigatefurtherthedependenceofthestar-formationac-tivityonenvironmentbasedonemissionlines,whicharesensi-tivetotheionizingradiationcomingfromthenewly-formedhotstars.Weplottheweightedfractionofstar-forminggalaxies(asde nedinSect.2.7)andthemeanof[Oii]andHαEWsinFig.9,againstnormalizedclustercentricdistanceandprojecteddensity,respectively.The eldvalueisshownasahorizontalareaintheplots.
Weobservethatthestar-formationactivityisstronglysup-pressedintheclustercoreswithlessthan20%ofthegalax-iesformingstars.Thisfractionincreasessteadilyupto~50%atR≈3Rvirial,butitdoesnotreachclearlythe eldvalueof~for56%.thoseofredshiftsstar-forming(seeHammergalaxies.etThisal.1997; eldBaloghfractionetisal.typical1999;Nakataetal.2005).Althougheachoftheseauthorsuseddi er-entcutstode nethestar-formingpopulation,thederivedvaluesagreewithinthestatisticaluncertainties.
However,theincreaseinthestar-formationactivitywithra-diusisirregular.Inasimilarwaytothefractionofbluegalaxies,weobserveapeakatR~0.6Routsidevirialinboth,star-formingfractionandmeanEWs.Onlyof1Rtoincreaseagain.Theexplanationforvirial,thoseindicatorsstartthispeakisdiscussedinSect.6.2.
Themeanfractionofstar-forminggalaxiesincreaseslin-earlytowardslow-densityregionsandreachesthe eldvalue
onlywithintheuncertainties.ThemeanEWsof[Oii]andHαfollowsimilartrends,buttheyalsodisplayapeakatΣgalaxiesMpc 2.ThemeanEWsofthoselinesdisplay5similar~60values,whichareslightlylowerfor[Oii],eventhoughthatinthelocaluniversethetypicalrelationisW0([Oii])≈0.4W0(Hα)(Kennicutt1992).
Theprevioustrendsindicatethatthequenchingofthestar-formingactivitystartsatslightlylargerclustercentricdistancesandlowerprojecteddensitythatthosesampledhere.
Severalstudiesinthelocaluniversehavefoundthatthestar-formationactivityreachesthe eldvalueapproximatelyatclustercentricdistances~2R.(e.g.Lewisvirialandprojecteddensitiesaround~1galaxyMpc 2etal.2002;G´omezetal.2003;Rinesetal.2005).Thoseresultsarecompatiblewiththeresultsfoundhere,althoughthoselowdensitiesarenotreachedinthisstudy,buttheclustercentricdistancesare,andwestillobserveslightstar-formationdepletionatdistancesR>2Rstar-formingfractioninthelocaluniverseisvirial.Asthe eldmuchlower(~35%,seee.g.Rinesetal.2005),theradialtrendfoundinthisstudyis,therefore,steeper,indicatingthatthesuppressionofthestar-formationactivityinclustersatz~0.25wasmoree ec-tive,becausethestar-formingfractionintheinternalregionsofclustersissimilaratallredshifts(e.g.Baloghetal.1999;Nakataetal.2005).
Pimbbletetal.(2006)studiedasampleof11clustersbe-tween0.07<z<0.16,withquitegoodcoverageoutsideof1Rresultspointtowardssimilarconclusionsasvirial.Alhough,thethestudiesatz~0,thebreakinthestar-formationactivityappeartobeshiftedslightlytowardshigherdensities,ane ectthatwecannotcon rmnorexclude,althoughinourcasethefractionap-proachestothe eldvalueatΣdensitycalculation5≈10hampergalaxiesdirectMpccomparisons.
1,butthedif-ferencesontheAthigherredshifts,moststudieshavebeenfocusedonthecentralregionsofclusters(e.g.Baloghetal.1999,2002a,b).Ourresultscomplementthosestudies,samplingsimilarclustersatlargerclustercentricdistances,withfocusonthecluster- eldinterface.Italsobridgesthestudiesbeingperformedbydeepsurveyswhichhavefocusedmainlyonlow-densityregions(e.g.Elbazetal.2007;Cooperetal.2007;Franzettietal.2007).
6.Originofthetrends
Toexploretheoriginoftrendsdescribedintheprevioussection,wesplitthesampleintodi erentsubsamplesaccordingtovari-ouscriteria.
6.1.Thestar-formingpopulation
Weanalyze rstthepropertiesofthestar-formingpopulationonly,de nedtobethegalaxieswithequivalentwidthsWdynamicalrangeofradiusandgalaxydensitiesis0>5Å.Thesmallerbecausethesubsampleissmallerthantheoriginalsample.
ThemeanEWs(Fig.10)remainstableoverawiderangeofclustercentricdistancesanddensityvaluesandarestatisticallysimilartothosefoundfor eldstar-forminggalaxies,whichim-plythatthepopulationsdonotdi ersubstantially.ThisleadstotheconclusionthatthetrendsseeninFig.9aredrivenonlybythechangeintherelativenumbersofstar-formingandpassivegalaxiesindi erentenvironments.
Thisresultissimilartothe ndingsofBaloghetal.(2004a)andRinesetal.(2005)atz≈0whofoundthatthemeanHαEWsdisplayasimilardistributionforstar-forminggalaxieslo-catedin“high”and“low”densityenvironments.
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters
11
Fig.9.Fractionofstar-forminggalaxies(leftpanels)andmeanEWsof[Oii](middlepanels)andHα(rightpanels)againstnormal-izedclustercentricdistances(toppanels)andprojecteddensitiestothe5thneighbor(Σ5,bottompanels),plottedasthethick,solid,blacklines.Theshadedareasaroundthecurveinlightbluearethestandarddeviationsofthebootstrappedvalues.Thehorizontalareasshowthe eldvaluesforgalaxiesbetween0.15<z<0.
35.
6.2.Subsamplesaccordingtomembership
Giventherelativesmallsampleandsomeunusualfeaturesinthecompositecluster,weinvestigatethein uenceofindivid-ualclustersonthe nalmeasurementsforthecompositecluster.Sincetwoclusters,VMF73andVMF131,accountforanim-portantfractionofthedatausedinthecompositecluster,weinvestigatethemindividually.Here,giventhesmallernumberofgalaxies,weareforcedtousefewerdatapointsinourstatisticalanalyses,whichincreasesthelevelofnoise.
TheresultscanbeseeninFig.11.Wenotestrikingdi er-encesbetweentheclusters,especiallyintheradialdistribution.ThetrendsfortheclusterVMF73showpeaksinside1Rvirial.Therefore,weconcludethatthepeaksdetectedintheglobaltrendsareexclusivelyduetothiscluster.Theexistenceofthispeak,orratherthedepletionat~1Rvirialislikelyane ectofasecondarystructureinthiscluster(seeSect.4.3),becausetheradialgradientisthecombinationofbothsubstructures.ThiscanbetakenasadditionalevidencethattheX-raystructuredetectedbyRasmussen&Ponman(2004)actuallybelongstothecluster.Itmayformpartofaninfallinggroupandclearlyhasanoticeablee ectonthegalaxypopulationofthiscluster.Additionale ectsmayarisefromthegeometricalcon gurationoftheclusteratR<1Rvirial,givenitselongatedgalaxyconcen-tration.ThosefeaturespassedunnoticedinthepreviousanalysisofGerkenetal.(2004)asthe xedbinsusedtheree ectivelyerasedthedetail.
VMF131shows,ontheotherhand,amodestbutsteadyin-creaseinitsstar-formingactivitytowardslargerclustercentricdistances.Thisclusterisquitewellstudiedatlargeradii.Thus,thegeneraltrendsofthecompositeclusteratthesedistancesareverydependentonit.
Fig.10.Similarto gure9butnowanalyzingthedistributionofthestar-formingpopulationonly(i.e.W0([Oii],Hα)>5Å).
Thisbehavioroftheactivegalaxypopulation,togetherwiththestrongbimodality,observedincolors(Baloghetal.2004b)andEWs(Hainesetal.2007),detectedinlargelocalsurveysfa-vorsmechanismsthattriggerarapidevolutionbetweengalaxysubtypes.
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
12Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25
clusters
Fig.11.Fractionofstar-forminggalaxiesandmeanequivalentswidthsagainstnormalizedclusterdistanceandprojecteddensityfortheclustersVMF73andVMF131asdepictedintherespectivepanels.Inthebottompanels,dashedbluelinesarefor W0([Oii]) andsolidredlinesfor W0(Hα) bottompanelsthedashedbluelinerepresentthemean[Oii]EWsandthesolidredlinetheHαones.Therespective1-σaremarkedasthehashedareasinthebottompanelsandthindottedlinesintoppanels.Sincedensityprobesenvironmentindependentlyoftheclus-tergeometry,clustersubstructuredoesnota ect,inprinciple,thecorrelations.Nevertheless,weobservethatthetrendsforthesetwoclustersarequitedi erent.VMF73showsasharpin-creaseinthefractionofstar-forminggalaxiestowardslowerpro-jecteddensitiesbutamodestincreaseintheiroverallactivity,asmeasuredbytheirEWs.VMF131displaysanincreaseinitsfractionofstar-formingmembersandtheaveragestar-formationactivityissimilarlyincreased.
Thescatterofthegalaxypopulationinsideclustershasbeenalreadynoted,itdoesnothoweverdependstronglyontheirX-rayluminositynorvelocitydispersionaccordingtoPopessoetal.(2007),althoughPoggiantietal.(2006) ndbothaweakcorrelationofgalaxypropertieswithclustermassandevolutionofthecorrelationwithredshift.Thisscattermayberelatedtomoresubtleproperties,suchasclustersubstructure,mass-assemblyhistoryandintra-clustergasdistribution,aswellasthepropertiesofthelarge-scalestructuresurroundingtheclusters.
stituteonaverage25%oftheentireclusterpopulation.Theysug-gestthatthoseobjectsareintheprocessofevolutionfromlatetoearlytypes.Wolfetal.(2005)identi edhundredsinthe eldofthesuperclusterA901/902(z≈0.17)basedontheinforma-tioncontentinthemedium-bandphotometryoftheCOMBO-17survey.Theyinterpretethecolorofthosegalaxiesasaproductofthecombinationofoldstellarpopulationsanddustextinction.Similarly,Tanakaetal.(2007)presentedindicationofredgalax-ieswithyoungerstellarpopulationsingroupsaroundaz=0.55cluster.Theyarguedthatthoseredgalaxieshavetruncatedtheirstarformationactivityrecently,onashorttimescale,butthattheyhostalargefractionofoldstarsinaadditiontoareason-ableamountofdust.
Ontheotherhand,Martinietal.(2002),basedonROSATX-raydata,reportedanunexpectedlyhighfractionofAGNsinellipticalgalaxiesinamassivez=0.15cluster,whichdidnotshowopticalsignatures.Althoughtheirsampleissmall,thefrac-tionofobscuredAGNsissimilartothefractionofbluegalaxiesidenti edinthatcluster.Furthermore,Yanetal.(2006)foundthatmorethanthehalfofredgalaxiesintheSDSS-DR4showemissionlines,mostofthemconsistentwithbeinglowion-izationnuclearemission-lineregions(LINERs).However,theLINERsmaynotbedueonlytoAGNs,forexampleSarzietal.(2006)reportextendedLINER-likeemissioninseveralearly-typegalaxiesintheirspatially-resolvedspectroscopy.Thereforethequestionisnotclearlysettled.
TodecidewhetherthosegalaxiesareAGNsornot,andtowhatdegreeourstar-forminggalaxiesmaybecontaminatedbynuclearactivity,weperformedsometestsbasedontheemissionlines.WenotethatwemaybeunabletodetectobscuredAGNs.NogalaxyshowssignsofbroadeningtypicalofSeyferts1,butSeyferts2andLINERsmaystillbepresent.Wecalculatetheratiosbetweenemissionlines([Oii],Hβ,[Oiii]λ5007,Hαand[Nii]),whereispossiblesincealllinesarerarelypresentalto-gether.Weconductseparateteststocheckallpossibilities.
The rstclassicaltestputthegalaxiesintotheBPTplane(i.e.log([Oiii]/Hβ)vslog([Nii]/Hα),Baldwinetal.1981).EachparoflinesarecloseenoughtousetheEWsinsteadofthe uxes.
7.Thecaseoftheredstar-forminggalaxies
WealreadynotedinSect.3.2theexistenceofasub-populationofclustergalaxieswithemissionlinesbutredcolors.Twenty- veoutof56star-forminggalaxiesbelongtothispopula-tion.TheiraverageEWsare W0([Oii]) =14.8±2.48Åand W0(Hα) =19.9±4.90Å,respectively,similar(within1-σsig-ni cancelevels)tothemeanstar-formingpopulation(seeFig.10).Theydonotseemtopopulateanyspecialenvironmentinthecluster,beingmoreorlessevenlydistributedinradiusanddensity,whichexplainsthesimilaritybetweentheblueandthestar-formingfraction(Fig.8and9).Theyalsospanthefullrangeofluminositiescoveredbythisstudy.
GalaxieswitharedSEDandstar-formationactivityhavebeenroutinelyreportedatintermediateredshifts,eitherinthe eld(e.g.Hammeretal.1997)orinclusters(e.g.Demarcoetal.2005).InthecaseofthelocalUniverse,arecentpaperbyPopessoetal.(2007)reportsthatredstar-forminggalaxiescon-
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters
13
Fig.12.LineratiodiagnosticdiagramstoidentifyAGNs.TheleftpanelistheBPTplaneshowingtherelationbetweenfouremissionlines.ThedashedanddottedcurvesseparateAGNsfromstar-forminggalaxies(seetext).Theverticalandhorizontallinesaretheapproximateseparationbetweentypes.Thelowerrightpanelisthe[Oii]–HαdiagramaimedtoidentifyLINERs.ThedottedlineisthelocalKennicutt’srelationforstar-forminggalaxies,whereasthedashedlineisthetesttoidentifyLINERs.Theupperrightpanelistherelationbetween[Nii]andHαEWs.Blueopencirclesare“normal”star-forminggalaxiesandred lledonesaretheredstar-forminggalaxies.Thesizeofthesym-bolsisrelatedtothecon dencewithwhicheachindexcanbemeasured,thelargerthebetter.
WeplotinFig.12allgalaxiesforwhichthoseindexescanbemeasured.Thelinesaretheempiricalseparationbetweenstar-forminggalaxiesandAGNsofKau mannetal.(2003):
log
[Oiii]
log [Nii]
0.61Hβ
=
+1.19(3)
Hα 0.47
Theseparationbetweengalaxytypesismadeusing[Oiii]/Hβ>3and[Nii]/Hα>0.6,withthelatteralsousedindependentlyforallgalaxieswherethesetwolinesarepresent,whichoccurredmoreoftenthaninthecaseofthefourlinestest.ThelatesttestwasproposedbyYanetal.(2006).Itusesonlytheratiobetween[Oii]andHαEWsandwasaimedmainlytodetectLINERs.
W0([Oii])>5·W0(Hα) 7
(4)
Intotal,10galaxiesshowsomesignsofAGNactivitywith6beinggalaxiesclassi edas“redstar-forming”.Notethat,theemission-linedataforallAGNcandidatesarepositionedclosetotheboundariesoftherespectivetests,indicatedinFig.12,whichmeansthattheirnuclearactivityisratherloworcomposite.TheexclusionoftheseAGNscandidatesdoesnota ecttheresultsshowninFig.9and10,whichisanexpectedresultbecauseAGNfrequencyisnotcorrelatedwithenvironment(Milleretal.2003).
Asnotedbefore,inFig.9and10,themeanEWsofthe[Oii]andtheHαlinesdisplaysimilarvalues,eventhoughinlocalsamplestherelationbetweentheEWsoftheseemissionlinesfollowstheKennicutt’slaw(W1992).Thiscanbemoreclearly0([Oii])≈0.4Wseeninthe0(Hα),KennicuttlowerrightcornerofFig.12,wheretheKennicutt’srelationisplot-ted.Noclearexplanationhasbeenfoundforthisdeviation,butHammeretal.(1997)reportedthesamee ectintheCanada-FranceRedshiftSurveygalaxiesatsimilarredshifts.Theypre-sentedvarioushypothesesthatmayapplytoourwork,suchas,lowerextinction,lowermetallicitiesandcontaminationbyAGNs.However,weexcludethepossibilityofhereastrongAGNcontaminationandmostnormalstar-forminggalaxiesalsopresentthese“unusual”values.Thedeviationisthereforeprob-ablycausedbythelowermetallicitiespresentindistantgalaxies(seeKobulnicky&Kewley2004),becausethe[Oii]-Hαratiode-pendsstronglyonthisparameter(Jansenetal.2001).
WecanestimatethecontributionofdustextinctionusingtheTully&Fouque(1985)extinctionlawsfordiskgalaxies.Atz≈0.25,theVandI lterscorrespondapproximatelytorestframeBandR-bands.Atagiveninclinationangle,theextinctionintheR-bandis~0.56E(B):onlydiskgalaxieswithinclinationslargerthan60 willthereforehaveacorrectionfactorE(B R)>0.2mag(seeTable1inB¨ohmetal.2004),avaluesu cientlylargetomovetheirdata-pointsawayfromred-sequence.
Ourground-basedINTimagesdonotallowustosecurelyclassifythemorphologicalpropertiesofourgalaxies,sincethetypicalseeingof~1arcsec(~4kpcatz=0.25)repre-sentsapproximatelyonescale-lengthforspiralgalaxies(e.g.Bamfordetal.2007).Basicpropertiescanhoweverbeobtained,asgalaxiesinoursampletypicallyhaveanapparentsizeof5–10arcsec.Afterexamination,we ndthatoutofthe25“redstar-forming”galaxies,11areclearlyspirals,11appearbulge-dominated,twoareirregularandonegalaxy,whichisalsoanAGNcandidate,showssignsofinteraction.Outof11spirals,8areprobablyedge-ongalaxiesandtheremainingthree,face-on.
Dustextinctioncan,therefore,explainthecolorsofonlyafractionoftheredstar-formingobjects,becausedustpropertiesatz~0.25donotdi ermuchfromthoseofthelocaluniverse,andhighly-tiltedgalaxiescanbeeasilydistinguished.
Theredstar-forminggalaxiesappeartobetransitionob-jectspopulatingthe“greenvalley”(Salimetal.2007)inFig.13,whereweplotthespeci cstar-formation(sSFR)activity5versusstellarmass.Mostofthered-starforminggalaxies(aswellassomeAGNs)arelocatedina“transitionregion”6be-tweennormalstar-forminggalaxiesandpassiveones.ThemeansSFR10fornormalstar-forminggalaxiesis~(1.08±0.65)×10 yr 1,whereastheredstar-forminggalaxieshaveonaver-agesSFR≈(2.4±0.6)×10 11yr 1,aboutanorderofmag-nitudelower.TheaverageupperlimitforpassivegalaxiesissSFR≈(4.8±3.3)×10 12yr 1becausewedonotincludegalax-ieswithunphysicalstar-formationrates.
Wenotethatthosegalaxiesmayalsobepresentinthe eld,althoughwecannotclearlyidentifythem,giventheuncertaintiesinthek-correctionsof~0.2mag,whicharelargerthantypicalred-sequencescatter.However,itcanbeseenthatmostofthenormal eldandclusterstar-forminggalaxiesarelocatedintheupperpartofthisdiagram,aroundtherelationforlocalgalaxiesfoundintheUV-selectedsampleofSalimetal.(2007).Wenote
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
14Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25
clusters
Fig.13.Speci cstarformationratesfor eld(top)andclus-ter(bottom)galaxies,versusstellarmass.Normalstar-forminggalaxiesareplottedwithblue lledstarsandtheredstar-forminggalaxieswithgreenpentagons.Theredopenstarsarepassivegalaxieswith0<W0([Oii],Hα)<5andareshownforcompar-ison.TheblackcirclesaretheAGNcandidates.ThethicklineisthelocalrelationfromSalimetal.2007.
that eldandclusterstar-forminggalaxiesarelocatedinsimilarregionsofthisdiagram,anadditionalindicationthatbothpop-ulationsarecomposedsimilarclassesofobjects.However,theredstar-forminggalaxiesappeartobeclearlyo setfromthisrelation.
Itisinterestingtonotethatthede nitionofastar-forminggalaxysetatW0([Oii],Hα)≥5Ånotonlyhasaobservationalsensebut 11alsoaphysicalmeaningandcorrespondstoasSFR≈2×10yr 1,aratesu cientlylowtoconsideragalaxyaspassive.
Itispartofthestandardpictureofgalaxyevolutionthatob-jectsinthebluecloud(herethestar-formingsequence)slowlygrowinstellarmassviagasaccretionovercosmictimes.Mergersandotherstronginteractionscantriggerstar-bursts,dis-placingupwardsthegalaxiesinthediagram(Fig.13)addingalargeamountofstellarmassinashortperiodoftime(somovingrightwards).Ontheotherhand,gasexhaustionorgasremovalbymeansofinteractionsorfeedbackprocessescanleadtoaquenchingofstar-formationthatmovesthegalaxydownwards,towardstheredsequence,whereitcanexperiencesmallepisodesofstar-formation,accretemoregasandmoveagainintothebluecloud,orstaypermanentlythereiftheenvironmentishostile(asinthegalaxyclusterscores).
Inthispicture,theredstar-forminggalaxiesarelocatedinanintermediatestagebetweenthetwomainsubtypes,withlowerbutstillappreciableamountsofstar-formation.Thevariationintheabundanceofthispopulationwithcosmictimemayprovideadditionalinsightsintothenatureofthestellarmassbuildup,al-though,amorecarefultreatmentofAGNactivity,dustextinctionandstellarpopulationisrequiredtofullyexplaintheirnature.
8.Summaryandconclusions
WehaveobtainedMOSCAspectroscopyfor149membergalax-iesin6clustersat z ~0.25,outtolargeclustercentricdis-tances.Thissampleiscompareddirectlywith97galaxiesinthe eld.ThespectroscopicdatasetiscomplementedwithVandI-bandphotometryinthethree eldsandmultibandphotometryfromtheSDSSintwoofthem.Themain ndingscanbesum-marizedinthefollowing.
1.Thesuppressionofthestar-formationactivitycanbede-tectedatlargeclustercentricdistances(R>1R<10Mpc 1,inanenvironmentwherevirial)andlowdensitiesΣ5theclus-terissupposedtohavelittlein uence.Thisresultagreeswithsimilarresultsatredshiftz≈0basedonthe2dFGalaxyRedshiftSurvey(Lewisetal.2002)orSDSS(G´omezetal.2003),whereacriticalvalueofdensitywasfound,belowwhichtheenvironmentappeartobegintoplayacriticalrole.Althoughourdensityestimatesarenotdirectlycomparabletotheselow-redshiftstudies,itispossiblethatwedidnotreachthislowthresholdofΣ5~1Mpc 2reportedbythosestudies.Ourinvestigationreachedstar-formationactivitiesclosetothosefoundinthe eld,probingthetransitionbe-tween eldandclusterenvironmentinthedistantUniverse.Thedecreaseofthestar-formationactivityissmoothwithincreasingdensity,butamorecomplexbehaviorwasfoundwhentheradialdependenceisstudied,asitisstronglyaf-fectedbysubstructure.
2.Thetrendsinthestar-formationactivitymeasuredbythemean[Oii]andHαEWsareduemainlytoastrongde-creaseintherelativenumberofstar-forminggalaxiesto-wardshigherdensitiesandsmallerclustercentricdistances,ratherthanaslowdeclineinthestar-formationratesofgalaxies.This ndingfavorsviolentsuppressionofthestar-formationactivity.
3.Despitetheimportanceoftheoveralltrends,importantdif-ferencesarefoundbetweenthestudiedclusters.Thetwomostwell-studiedclusterswereanalyzedseparatelyfromallotherclusters..Itwasfoundthattheshapeofthestar-formationgradientswerequitedi erentfromeachother..Thisdi erencewasmoreaccentuatedintheradialtrendssincethee ectsofsubstructurecouldnotbediscernedintheassumedradialdensitypro le.
Intheliterature,manystudieshavefocusedeithersolelyononeusuallywell-sampledcluster(e.g.Kodamaetal.2001;Demarcoetal.2005;Sato&Martin2006),oronafamilyofclusters(selectedbyX-rayluminosity,redshiftrange,etc),generallyfarlesswell-sampled,whichtypicallycombinealldatatocreatea“composite-cluster”(e.g.Baloghetal.1999,2002a;Pimbbletetal.2006)inasimilarwaytoouranal-ysishere.However,ourstudyindicatesthatmanyoftheoveralltrendsmaynotbeuniversal,butmaybestronglyre-latedtotheparticularitiesofthesystemthattheindividualgalaxiesbelongto.Therefore,thee ectsofthesubstructureshouldnotbeneglectedwhenanalyzingtheuniversalityofstar-formation-environmentrelation,becauseeachparticularsystemmayhavedi erentproperties(seealsoRinesetal.2005forasimilarresultatz=0).
4.Theclustersshowvariationsnotonlyduetothesubstruc-ture,butalsointheirgalaxypopulations.Forexample,wedetectedanimportantsub-populationofredstar-forminggalaxiesinsomeclusters,whichhavesimilarcolorsorareredderthanthered-sequence.Thecharacteristicsofthispop-ulation,asmeasuredbytheirenvironmentaldistribution,donotdi ermuchfromtheremainderoftheemission-linepop-
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters15
ulation.AfractionofthemcouldbeAGNs,buttheAGNcontaminationisnotlargerthanintherestofthestar-formingpopulation.Nonetheless,allAGNcandidatesshowrelativelylowactivity.
Dustmayplayarolebecausesomegalaxiesareclearlyedge-onspirals.Thise ectmaybeopresentinothergalaxies.Itis,however,intriguingthatsomeotherwiseblueactivestar-forminggalaxieshavethepreciseamountofdusttomakethemfallontothenarrowredsequence.
Thesetwoe ectstogether,however,areonlyabletoexplainafractionofthispopulation.
Thesegalaxiesarelocatedinatransitionzone,betweennor-malstar-forminggalaxiesandpassiveones,wheregalaxiesappeartoformstarsatarelativelylowerrate.Theymaybeintheprocessofshuttingdowntheiractivityand/ortheycancontainarelativelysigni cantoldstellarpopulationcom-binedwithamoderateamountofdust.Ifthesegalaxiesaretrulytransitionobjects,theirabundancemayprovideimpor-tantcluesaboutthemass-assemblyhistoryasgalaxiesgrowinmassviaaccretionandmergingandshutdowntheirstar-formationovercosmictime(e.g.Belletal.2005).
Ourresultsfavormechanismsofstrongstar-formationsup-pression.Amongthepreferredprocessesisram-pressurestrip-ping(andotherstronggalaxyinteractionswithintheintraclus-termedium).Thisprocesscanquenchthestar-formationontimescaleasshortas1Gyr,whichisthedynamicaltimescaleofaclusterpassage.Ram-pressureisverye ectiveinthecen-tralregionsoftheclusters(e.g.Kapfereretal.2007).Wedetecthoweverstar-formationdepletionatclustercentricdistancesasfaras~3Rhavealreadyvirial.Itispossiblethatmanygalaxiesintheoutskirtspassedthroughthedenserintraclustermedia.Infact,modelsbyGilletal.(2005)predictthatasmanyashalfofthegalaxiesbetween1–2.5Rvirialmaybe“bouncing”aftera rstpassage(the“backsplash”scenario)andthushaveexperiencedstronginteractionsintheinnerclustercoreforasu cienttimetoexplaintheirpassivenature.Therefore,ram-pressurestrippingcannotdisregardedasaimportantmechanism,particularlybe-cause,sincedirectevidenceofthisprocessatworkhasbeenreportedbysomeauthors(e.g.Bosellietal.2006;Corteseetal.2007).
Otherprocessesmaybestillacting,becausequenchingofstar-formationisobservedatdistanceslargerthanthosepre-dictedbytheGilletal.(2005)simulations.Also,theirproposed“backsplash”populationwouldonlyaccountforafractionofthegalaxypopulationintheclusteroutskirts.Anyotherpro-cessthatquenchesthatstar-formationmoregradually(e.g.star-vation,harassment,etc)wouldhavebeendetectedviaenhance-mentordepletioninthestar-formingpopulationwithenviron-ment,whichisnotthecase.Onepossibilityisthatotherpro-cessesa ectthestar-formationongalaxiesbeforetheybegintofallintotheclusters,ingroupsand lamentsembeddedinthelarge-scalestructure.Inthoseenvironments,severalprocessesarethoughttobee ectiveinchangingthegalaxystellarpopula-tions.Ram-pressurestrippingmaystillbee ectiveinsystemsoflowermassesundercertaincertainconditions(e.g.Fujita2004;Hester2006)andthusmaycontribute.Mergerandtidalinterac-tionsinthoseenvironmentsarealsolikelyandtheycantriggerstarburststhatconsumegasrapidlyandstriptheremaininggasviafeedbackmechanisms(e.g.Bekki2001;Fujita2004).Thisscenarioiscompatiblewiththerecent ndingsofTanakaetal.(2007)andHainesetal.(2007).
Itisimportanttonotethateveryclusterisaparticularen-tityofitsownanditislikelythatdi erentprocessesareimpor-
tant.Theycandependontheclusterhistoryandcon guration,aswellasonthecharacteristicsofthesurroundingenvironment.Thesee ectsmayin uencethegalaxypopulationthatinhabittheclustersasshownrecentlybyMoranetal.(2007).Thisviewissupportedherebythedi erentstar-formationgradientsde-tected,duemainlytosubstructureandtheabundancesinthegalaxypopulation,withsomeclustersharboringanimportantfractionofred-starforminggalaxies,whichmaybeimportantinthegeneralschemeofgalaxyevolution.
Acknowledgements.Wethanktoananonymousrefereeforinsightfulsugges-tionsthathelpedtoimprovethispaper.WewouldliketothanktheCalarAltolocalsta fore cientsupportduringtheobservationsandD.Gilbankforpro-vidingINTimagingandphotometry.WethankK.J¨agerandA.Fritzforsoft-wareandobservationalsupport.WethankM.Balogh,C.DaRochaandJ.Rasmussenforhelpfuldiscussions.Thisworkhasbeen nanciallysupportedbytheVolkswagenFoundation(I/76520)andtravelgrantstoCalar-AltobyDFG(ZI663/5-1).
References
Baldwin,J.A.,Phillips,M.M.,&Terlevich,R.1981,PASP,93,5Balogh,M.,Bower,R.G.,Smail,I.,etal.2002a,MNRAS,337,256Balogh,M.,Eke,V.,Miller,C.,etal.2004a,MNRAS,348,1355Balogh,M.L.,Baldry,I.K.,Nichol,R.,etal.2004b,ApJ,615,L101
Balogh,M.L.,Morris,S.L.,Yee,H.K.C.,Carlberg,R.G.,&Ellingson,E.1999,ApJ,527,54
Balogh,M.L.,Smail,I.,Bower,R.G.,etal.2002b,ApJ,566,123Bamford,S.P.,Milvang-Jensen,B.,&Arag´on-Salamanca,A.2007,MNRAS,378,L6
Beers,T.C.,Flynn,K.,&Gebhardt,K.1990,AJ,100,32Bekki,K.2001,ApJ,546,189
Bekki,K.,Couch,W.J.,&Shioya,Y.2002,ApJ,577,651Bell,E.F.,Papovich,C.,Wolf,C.,etal.2005,ApJ,625,23
Blanton,M.R.,Dalcanton,J.,Eisenstein,D.,etal.2001,AJ,121,2358
Blanton,M.R.,Eisenstein,D.,Hogg,D.W.,Schlegel,D.J.,&Brinkmann,J.2005,ApJ,629,143
Blanton,M.R.&Roweis,S.2007,AJ,133,734B¨ohm,A.,Ziegler,B.L.,Saglia,R.P.,etal.2004,A&A,420,97Boselli,A.,Boissier,S.,Cortese,L.,etal.2006,ApJ,651,811Bower,R.G.1991,MNRAS,248,332
Bruzual,G.&Charlot,S.2003,MNRAS,344,1000Butcher,H.&Oemler,Jr.,A.1978,ApJ,226,559
Carlberg,R.G.,Yee,H.K.C.,&Ellingson,E.1997,ApJ,478,462
Cooper,M.C.,Newman,J.A.,Weiner,B.J.,etal.2007,ArXive-prints,706Cortese,L.,Marcillac,D.,Richard,J.,etal.2007,MNRAS,376,157David,L.P.,Slyz,A.,Jones,C.,etal.1993,ApJ,412,479
Demarco,R.,Rosati,P.,Lidman,C.,etal.2005,A&A,432,381Dressler,A.1980,ApJ,236,351
Dressler,A.,Oemler,A.J.,Couch,W.J.,etal.1997,ApJ,490,577Elbaz,D.,Daddi,E.,LeBorgne,D.,etal.2007,A&A,468,33
Ellingson,E.,Lin,H.,Yee,H.K.C.,&Carlberg,R.G.2001,ApJ,547,609Franzetti,P.,Scodeggio,M.,Garilli,B.,etal.2007,A&A,465,711Fujita,Y.2004,PASJ,56,29
Fukugita,M.,Shimasaku,K.,&Ichikawa,T.1995,PASP,107,945Gehrels,N.1986,ApJ,303,336
Gerken,B.,Ziegler,B.,Balogh,M.,etal.2004,A&A,421,59
Gilbank,D.G.,Bower,R.G.,Castander,F.J.,&Ziegler,B.L.2004,MNRAS,348,551
Gill,S.P.D.,Knebe,A.,&Gibson,B.K.2005,MNRAS,356,1327Gnedin,O.Y.2003,ApJ,589,752G´omez,P.L.,Nichol,R.C.,Miller,C.J.,etal.2003,ApJ,584,210Goto,T.,Yamauchi,C.,Fujita,Y.,etal.2003,MNRAS,346,601
Haines,C.P.,Gargiulo,A.,LaBarbera,F.,etal.2007,MNRAS,381,7Hammer,F.,Flores,H.,Lilly,S.J.,etal.1997,ApJ,481,49
Harker,J.J.,Schiavon,R.P.,Weiner,B.J.,&Faber,S.M.2006,ApJ,647,L103Hernquist,L.1992,ApJ,400,460Hester,J.A.2006,ApJ,647,910
Hicks,A.K.,Ellingson,E.,Hoekstra,H.,&Yee,H.K.C.2006,ApJ,652,232Hogg,D.W.,Blanton,M.R.,Eisenstein,D.J.,etal.2003,ApJ,585,L5Hopkins,A.M.2004,ApJ,615,209Hubble,E.P.1936,YaleUniversityPress
Jansen,R.A.,Franx,M.,&Fabricant,D.2001,ApJ,551,825
Kapferer,W.,Kronberger,T.,Weratschnig,J.,etal.2007,A&A,466,813Kau mann,G.1996,MNRAS,281,487
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
16Verdugoetal.:Galaxypopulationsintheinfallingregionsofz≈0.25clusters
Kau mann,G.,Heckman,T.M.,Tremonti,C.,etal.2003,MNRAS,346,1055Kennicutt,Jr.,R.C.1992,ApJ,388,310
Kewley,L.J.,Dopita,M.A.,Sutherland,R.S.,Heisler,C.A.,&Trevena,J.2001,ApJ,556,121
Kobulnicky,H.A.&Kewley,L.J.2004,ApJ,617,240Kodama,T.&Bower,R.G.2001,MNRAS,321,18
Kodama,T.,Smail,I.,Nakata,F.,Okamura,S.,&Bower,R.G.2001,ApJ,562,L9
Larson,R.B.&Tinsley,B.M.1978,ApJ,219,46
Lewis,I.,Balogh,M.,DePropris,R.,etal.2002,MNRAS,334,673Markevitch,M.1998,ApJ,504,27
Martini,P.,Kelson,D.D.,Mulchaey,J.S.,&Trager,S.C.2002,ApJ,576,L109Mason,K.O.,Carrera,F.J.,Hasinger,G.,etal.2000,MNRAS,311,456Miller,C.J.,Nichol,R.C.,G´omez,P.L.,Hopkins,A.M.,&Bernardi,M.2003,ApJ,597,142
Moore,B.,Lake,G.,&Katz,N.1998,ApJ,495,139
Moran,S.M.,Ellis,R.S.,Treu,T.,etal.2007,ApJ,671,1503
Moustakas,J.,Kennicutt,Jr.,R.C.,&Tremonti,C.A.2006,ApJ,642,775Mullis,C.R.,McNamara,B.R.,Quintana,H.,etal.2003,ApJ,594,154
Nakata,F.,Bower,R.G.,Balogh,M.L.,&Wilman,D.J.2005,MNRAS,357,679
Pimbblet,K.A.,Smail,I.,Edge,A.C.,etal.2006,MNRAS,366,645
Poggianti,B.M.,vonderLinden,A.,DeLucia,G.,etal.2006,ApJ,642,188Popesso,P.,Biviano,A.,Romaniello,M.,&B¨ohringer,H.2007,A&A,461,411Quilis,V.,Moore,B.,&Bower,R.2000,Science,288,1617Rasmussen,J.&Ponman,T.J.2004,MNRAS,349,722
Rines,K.,Geller,M.J.,Kurtz,M.J.,&Diaferio,A.2003,AJ,126,2152Rines,K.,Geller,M.J.,Kurtz,M.J.,&Diaferio,A.2005,AJ,130,1482Salim,S.,Rich,R.M.,Charlot,S.,etal.2007,ApJS,173,267Sarzi,M.,Falc´on-Barroso,J.,Davies,R.L.,etal.2006,MNRAS,366,1151Sato,T.&Martin,C.L.2006,ApJ,647,934
Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,525
Tanaka,M.,Hoshi,T.,Kodama,T.,&Kashikawa,N.2007,MNRAS,379,1546Tanaka,M.,Kodama,T.,Arimoto,N.,etal.2005,MNRAS,362,268
Toomre,A.,Tinsley,B.,&Larson,R.1977,TheEvolutionofGalaxiesandStellarPopulations,401
Tully,R.B.&Fouque,P.1985,ApJS,58,67
Vikhlinin,A.,McNamara,B.R.,Forman,W.,etal.1998,ApJ,502,558Wolf,C.,Gray,M.E.,&Meisenheimer,K.2005,A&A,443,435Xue,Y.-J.&Wu,X.-P.2000,ApJ,538,65
Yan,R.,Newman,J.A.,Faber,S.M.,etal.2006,ApJ,648,281
York,D.G.,Adelman,J.,Anderson,Jr.,J.E.,etal.2000,AJ,120,1579
AppendixA:Starformationrates
Allindicatorsofstar-formationrates(SFRs)havetheirownbiasandsystematicsduetothedi erentprocessestracedfor
each
ofthem(forarecentreviewseeMoustakasetal.2006).Intheoptical,atleasttwoe ectsareveryimportant:extinctionandmetallicity.Ontheotherhand,opticalSFRscalculationrequiresaccurate uxcalibration,thatwelack.Howeverwecanstilles-timateSFRsusingtheEWsandtheabsolutemagnitudes(calcu-latedinSect.2.8)asaproxyofthecontinuum ux.Fortunately,ourspectracoverboth[Oii]andHαlines,sobothresultscanbecompared.
For[Oii]derivedSFRs,wecantakethecalibratedrelationofKennicutt(1992)SFR([Oii])=3.4×10 12
LB
L(A.3)
C
whereLCisthecontinuumluminosityinergs 1Å 1
(seeLewisetal.2002)andLdeterminedCby≈LBlantonR.ForaL galaxy,Letal.(2001),C=1.1×1040
ergss 1,aswithM
.8mag,leaving:
R= 21L(Hα)=1.1×1040W
0(Hα)10 0.4(MR MR)[ergss 1].(A.4)
Therefore, nallywehave
SFR(Hα)=0.079W0(Hα)10 0.4(MR+21.8)[ergss 1].
(A.5)
WeobtainedSFRsforallgalaxiesinwhicheitherofthesetwolinesismeasurable.Bothwaysarelikelytohavesystemat-icsanduncertainties,[Oii]becauseitisacalibratedrelationanddoubtspersistaboutitsuniversality(e.g.Hammeretal.1997).Alsoitisstronglya ectedbydustandmetallicity.InthecaseofHα,theassumptionsheremade,introduceuncertaintiesabouttheaccuracyofthe ux.Therefore,wetaketheaverageoftheSFRobtainedfrom[Oii]andHαandwhenonlyonelineispresentwetakethisvalue.WedidobtainSFRsforgalaxiescon-sideredpassive,howeverthosevaluesprobablyhavelargerun-certainties,sotheirSFRscanbeconsideredasanupperlimit.WealwaysmakedistinctionofbothpopulationsbasedintheEWdistinction(seeSect.2.7).WedidnotattempttoobtainSFRsforgalaxieswithnegativeequivalentwidthsbecausetheyyieldtounphysicalvalues,di culttointerpreteifincluded.
Usingthestellarmassesobtainedwithkcorrect(seeSect.2.8)weobtainedthespeci cstarformationrates(sSFR).ItisremarkablethestrongcorrelationwithlittlescatterbetweenEWsandsSFR,obtainedineitherway(i.e.[Oii]andHα)andthelittlescatter(albeitlargerfor[Oii]),aswellasthesimilarvaluesdisplayedusingbothmethods(seeFig.A.1),despitetheroughestimationmadehere.Also,itisimportantthatbothindicatorsyieldsimilarvaluesastheHαlinebecomesinaccessibleatlargerredshiftsandonly[Oii]canbeused.
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
OnlineMaterial
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
Table3.Dataforindividualobjects.Weonlypresentgalaxiesforwhichweobtainedsecuredredshifts(seesection2.4).Notethatweincludeallobjectsforwhichwewereabletoobtainthefollowingparameters.Manyobjectswereexcludedintheanalysisinordertoobtainahomogeneoussample(seesections3.5&4.4).Thecolumnsarethefollowing.Column(1):ObjectID.Column(2):cluster,groupor eldmembership.Columns(3)and(4):J2000skycoordinates.Column(6):redshift.Column(7):TheI-bandmagnitude.Column(8):TheV Icolor.Columns(8)and(9):TheabsolutemagnitudesintherestframeBandR-bands.Column(10):Thelogarithmofthestellarmass.Columns(11)and(12):The[Oii]EWsanderrors.Columns(13)and(14):TheHαEWsanderrors.
(1)(2)
(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)IDmembership
RA
DEC
z
I
V-IMBMRlog(M)[Oii]E([Oii])
HαE(Hα)[mag]
[mag]
[mag]
[mag]
[Mr2211
⊙ ][Å][Å][Å][Å]08vmf194
17:29:19.77
74:41:11.2
0.21167
16.75
1.426
-21.42
-22.79
10.78
8.95
0.95
1.10
0.23
r2211
10vmf194
17:29:30.06
74:40:43.0
0.21107
18.54
1.422
-19.64
-21.01
10.06
0.18
0.55
1.13
0.24
r2212
08vmf194
17:29:22.55
74:40:52.3
0.21080
17.92
1.409
-20.27
-21.62
10.30
3.93
0.60
1.12
0.28
r2212
14vmf194
17:26:24.27
74:27:35.2
0.20877
17.66
1.321
-20.62
-21.85
10.37
-0.02
0.69
-10.33
0.30
r2221
03bxdcs220
17:26:50.87
74:34:08.8
0.26652
19.52
0.880
-19.83
-20.66
9.75
-61.16
1.72
-45.71
1.66
r2221
03xdcs220
17:26:17.74
74:34:09.3
0.25712
18.85
1.587
-19.68
-21.19
10.17
0.21
0.39
-0.91
0.17
r2222
05xdcs220
17:24:11.04
74:31:12.1
0.26144
18.58
1.441
-20.16
-21.52
10.27
4.80
0.35
3.06
0.23
r2241
07xdcs220
17:23:28.45
74:43:41.7
0.25977
17.00
1.572
-21.59
-23.09
10.92
5.64
0.45
1.65
0.17
r2241
10xdcs220
17:23:24.29
74:42:56.2
0.25953
17.99
1.518
-20.64
-22.10
10.52
8.83
0.64
2.30
0.20
r2241
18xdcs220
17:23:05.48
74:39:30.5
0.25451
18.38
2.567
-19.55
-21.63
10.43
-20.46
0.29
-35.91
0.28
r2242
04xdcs220
17:24:12.22
74:22:23.8
0.26246
18.92
0.879
-20.37
-21.24
9.98
-37.27
1.09
-47.44
0.77
xdc29
14vmf131
13:11:22.18
32:28:53.8
0.29902
19.24
1.613
-19.75
-21.26
10.19
0.98
0.30
0.35
0.20
r2621
16vmf131
13:11:24.66
32:28:36.9
0.30015
18.99
1.340
-20.24
-21.50
10.23
-20.84
0.24
-31.54
0.33
r2631
02vmf131
13:10:16.57
32:30:36.6
0.29501
18.70
1.719
-20.14
-21.75
10.41
2.09
0.23
-1.66
0.16
r2632
03vmf131
13:10:18.96
32:30:18.7
0.29380
18.47
1.693
-20.38
-21.97
10.49
-0.38
0.18
0.15
0.13
r2632
12vmf131
13:10:34.20
32:27:30.8
0.29464
19.21
1.024
-20.25
-21.22
10.02
-19.41
0.21
-27.83
0.33
r2632
04vmf131
13:10:17.22
32:19:51.8
0.29577
18.90
1.903
-19.78
-21.56
10.36
-2.01
1.15
-12.32
0.90
r2641
06vmf131
13:10:12.94
32:24:09.1
0.29574
18.59
0.864
-21.02
-21.84
10.21
2.78
0.52
1.22
0.30
r2641
12vmf131
13:10:01.42
32:23:48.2
0.29614
17.98
1.500
-21.07
-22.47
10.65
....
....
-0.36
0.39
r2651
17vmf13113:11:13.9832:19:10.50.2943817.541.744-21.27-22.9010.87-4.270.17-0.600.11r265107vmf13113:10:05.7232:21:12.20.2965118.321.105-21.08-22.1310.425.070.800.240.60ba12vmf13113:09:55.0532:21:49.00.2938218.471.684-20.39-21.9710.493.510.553.180.36ba18vmf13113:10:11.3832:22:02.30.2938818.151.666-20.74-22.2910.616.150.490.200.35ba28vmf13113:09:56.1132:22:16.80.2920716.721.718-22.10-23.7011.185.120.350.840.22ba36vmf13113:10:00.1832:22:59.40.2943118.231.361-20.93-22.2110.52-6.820.38-11.690.35ba39vmf13113:09:57.6832:23:13.00.2923317.951.708-20.88-22.4710.69-2.660.46-0.460.31r2611
13vmf132
13:11:51.74
32:33:29.2
0.24964
17.79
1.463
-20.81
-22.20
10.54
6.78
0.35
1.40
0.21
r2611
02vmf132
13:12:27.01
32:32:06.6
0.24855
18.53
1.497
-20.01
-21.44
10.25
-15.32
0.23
-10.12
0.13
r2612
06vmf132
13:12:10.39
32:30:03.0
0.24954
17.28
1.477
-21.30
-22.70
10.74
1.87
0.14
0.97
0.09
r2612
03vmf132
13:11:01.05
32:30:41.6
0.24128
18.35
1.479
-20.12
-21.54
10.29
1.20
0.21
1.89
0.12
r2621
11vmf132
13:11:13.29
32:28:50.9
0.23976
18.63
1.575
-19.73
-21.24
10.19
4.32
0.27
1.15
0.13
r2621
22vmf132
13:11:33.84
32:29:11.9
0.25032
18.17
1.536
-20.36
-21.83
10.41
-2.56
0.23
-4.01
0.13
r2631
08vmf132
13:10:25.08
32:28:44.7
0.25008
19.30
1.361
-19.41
-20.70
9.92
....
....
-1.35
0.28
r2632
13vmf13213:10:37.8232:27:15.20.2456618.341.486-20.19-21.6010.31-0.170.191.180.12r264129vmf13213:09:49.9932:22:41.00.2495419.770.784-19.55-20.259.52-53.591.20-61.712.16r2811
16vmf73
09:43:58.38
16:41:09.6
0.25266
16.96
1.438
-21.70
-23.04
10.87
-0.16
0.65
-2.47
0.24
r2811
19vmf73
09:43:58.81
16:40:02.3
0.25384
18.60
1.386
-20.12
-21.42
10.22
-1.26
2.62
0.70
0.67
r2811
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
(1)IDr2811
25r2812
09r2812
14r2821
08r2821
17r2821
20r2821
27r2821
01r2822
04r2822
06r2822
14r2822
16r2822
19r2822
22r2822
25r2831
10r2831
07r2841
17r2851
14r2851
01r2811
05r2811
08r2811
11r2811
14r2811
23r2812
16r2812
22r2812
03r2821
07r2821
10r2821
07r2822
13r2831
20r2841
08r2841
09r2851
11r2851
09r2222
18r2222
08r2221
18
group2
17:26:45.45
74:27:01.2
0.04405
19.21
0.657
-16.34
-16.92
8.06
....
....
-51.86
0.39
group2
17:27:07.02
74:30:29.4
0.04385
18.36
0.940
-16.73
-17.57
8.48
....
....
-41.37
0.46
group1
17:25:26.20
74:30:15.5
0.05219
17.48
0.835
-18.12
-18.89
8.98
....
....
-9.51
0.12
group1
17:26:29.54
74:29:34.7
0.05308
16.30
1.114
-18.89
-19.96
9.52
....
....
-13.81
0.16
vmf74
09:43:52.55
16:31:20.4
0.18176
19.32
1.128
-18.84
-19.87
9.52
-39.42
1.39
-65.98
1.24
vmf74
09:43:50.52
16:30:28.0
0.18124
19.09
1.184
-19.00
-20.10
9.63
0.54
2.14
-0.59
0.77
vmf74
09:44:40.09
16:30:59.7
0.18478
19.32
1.081
-18.93
-19.93
9.52
-21.39
1.97
-28.51
0.92
vmf74
09:42:44.14
16:45:34.9
0.17989
18.08
1.173
-19.99
-21.06
10.00
-5.48
1.19
-2.32
0.60
vmf74
09:43:39.73
16:37:22.5
0.17946
19.23
1.161
-18.85
-19.89
9.54
1.35
1.87
-14.50
0.45
vmf74
09:43:49.72
16:40:51.4
0.18048
17.63
1.306
-20.28
-21.51
10.23
4.17
0.58
1.07
0.15
vmf74
09:43:46.04
16:39:54.5
0.17763
18.76
1.285
-19.11
-20.33
9.76
-16.78
7.64
1.04
1.10
vmf74
09:43:50.04
16:39:54.7
0.17926
18.60
1.319
-19.27
-20.49
9.83
-3.49
4.05
2.84
0.91
vmf74
09:43:56.38
16:39:57.5
0.17992
18.21
1.239
-19.77
-20.92
9.97
10.57
3.86
-0.03
0.71
vmf74
09:43:43.45
16:44:31.8
0.18096
17.77
1.289
-20.18
-21.39
10.18
8.73
3.08
0.07
0.36
vmf74
09:44:01.02
16:42:04.1
0.17750
17.95
1.203
-20.03
-21.16
10.07
-16.80
4.23
-10.69
0.60
vmf74
09:43:59.52
16:38:29.8
0.17833
17.98
1.123
-20.12
-21.14
10.02
-2.49
0.96
-6.81
0.28
vmf74
09:43:58.75
16:42:02.5
0.18250
17.82
1.305
-20.11
-21.34
10.16
5.52
1.71
1.56
0.36
vmf74
09:43:49.12
16:43:21.2
0.18086
16.81
1.354
-21.03
-22.33
10.57
0.70
0.64
-1.23
0.18
vmf74
09:43:45.15
16:44:05.6
0.17884
18.53
1.268
-19.40
-20.56
9.84
-8.10
1.85
-8.58
0.53
vmf74
09:43:44.49
16:44:54.2
0.18009
18.50
1.183
-19.57
-20.65
9.85
-21.52
1.18
-77.27
1.12
vmf74
09:43:44.47
16:46:05.3
0.17837
17.66
1.323
-20.18
-21.42
10.20
4.45
0.72
1.37
0.24
vmf73
09:44:04.69
16:32:49.3
0.25340
19.02
1.446
-19.63
-20.98
10.05
3.75
2.19
-4.63
0.66
vmf73
09:44:23.76
16:31:47.1
0.25035
18.12
1.383
-20.57
-21.88
10.39
1.61
0.98
1.43
0.22
vmf73
09:44:41.05
16:29:19.5
0.25003
18.64
1.176
-20.27
-21.37
10.14
-45.76
2.52
-21.50
0.73
vmf73
09:43:08.02
16:42:45.4
0.25696
18.24
1.102
-20.78
-21.80
10.28
-10.66
1.02
-18.04
0.78
vmf73
09:43:22.06
16:39:07.9
0.25037
18.54
1.402
-20.14
-21.46
10.24
-1.78
0.67
-4.66
0.26
vmf73
09:43:25.34
16:39:07.2
0.25491
17.81
1.494
-20.81
-22.24
10.57
2.17
0.52
0.26
0.17
vmf73
09:43:30.57
16:38:56.0
0.25294
19.30
1.418
-19.38
-20.69
9.93
2.32
1.27
3.04
0.48
vmf73
09:43:36.80
16:41:02.7
0.25521
18.19
1.427
-20.50
-21.87
10.41
0.76
0.82
0.47
0.25
vmf73
09:43:38.75
16:38:55.5
0.25331
18.59
1.415
-20.09
-21.41
10.22
3.89
0.90
2.31
0.29
vmf73
09:43:51.72
16:41:45.0
0.25285
18.03
1.186
-20.89
-21.96
10.37
-2.82
0.50
-16.58
0.30
vmf73
09:43:55.89
16:40:36.0
0.25507
18.68
1.394
-20.05
-21.38
10.21
0.97
1.08
2.27
0.32
vmf73
09:43:58.93
16:39:22.0
0.25607
18.91
1.398
-19.81
-21.14
10.11
-0.27
0.96
1.26
0.34
vmf73
09:43:23.53
16:39:46.4
0.25767
17.98
1.298
-20.85
-22.09
10.45
-0.29
1.31
-3.83
0.54
vmf73
09:43:33.63
16:39:06.8
0.25295
17.80
1.467
-20.83
-22.19
10.54
-13.73
2.82
3.80
0.80
vmf73
09:43:36.34
16:36:57.3
0.25693
17.58
1.503
-21.04
-22.46
10.65
3.38
2.29
-2.92
0.58
vmf73
09:43:48.71
16:40:39.1
0.25456
17.87
0.823
-21.45
-22.22
10.33
-33.96
0.81
-69.22
1.50
vmf73
09:43:53.57
16:41:43.2
0.25292
17.19
1.430
-21.47
-22.80
10.77
1.48
1.28
1.53
0.28
vmf73
09:44:00.32
16:40:11.5
0.24866
18.70
1.319
-20.03
-21.27
10.14
5.74
3.73
-1.70
0.82
vmf73
09:43:59.68
16:37:30.1
0.25423
18.10
1.536
-20.47
-21.93
(2)
membership
(3)RA
(4)DEC
(5)z
(6)I
[mag]
(7)V-I[mag]
(8)MB[mag]
(9)MR[mag]
(10)log(M )[M⊙]10.46
(11)[Oii][Å]-5.85
(12)E([Oii])
[Å]1.51
(13)Hα[Å]-2.06
(14)E(Hα)[Å]0.46
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
(1)IDr2231
19r2211
13r2211
19r2211
21r2212
18r2621
16r2631
01r2632
01r2211
04r2211
15r2211
18r2211
24r2212
14r2212
19r2221
13r2222
02r2222
05r2222
08r2222
12r2222
15r2222
06r2231
11r2231
16r2231
02r2241
11r2241
20r2241
22r2242
07r2242
11r2242
13r2251
06r2251
10r2251
15r2251
02r2611
07r2611
16r2612
03r2612
11r2612
14r2612
02
eld
13:10:57.07
32:28:05.7
0.12024
18.68
1.209
-18.33
-19.57
9.51
-1.12
0.60
-10.26
0.13
eld
13:11:52.16
32:32:12.1
0.44078
18.83
2.091
-21.50
-22.91
10.86
2.98
0.21
-5.77
0.32
eld
13:12:01.09
32:31:31.0
0.43522
19.02
2.049
-21.37
-22.91
10.92
1.11
0.22
1.50
0.37
eld
13:12:18.72
32:30:40.0
0.49186
19.47
1.650
-21.44
-22.44
10.39
-12.58
0.18
....
....
eld
13:11:46.33
32:32:54.9
0.35143
18.08
1.796
-21.23
-22.78
10.83
3.52
0.33
3.01
0.31
eld
13:12:02.58
32:31:35.8
0.43572
18.12
2.142
-21.96
-23.59
11.15
1.37
0.36
-1.01
0.55
eld
13:12:15.56
32:33:06.4
0.26403
18.93
1.349
-20.04
-21.39
10.17
-8.30
0.40
-23.45
0.37
eld
17:24:45.55
74:15:44.8
0.06325
18.35
0.743
-17.81
-18.51
8.77
....
0.00
-11.96
0.30
eld
17:24:04.79
74:18:39.2
0.44273
18.39
0.822
-22.37
-23.16
10.67
-5.02
0.14
-21.15
0.35
eld
17:23:50.15
74:20:50.9
0.05868
18.68
0.877
-17.14
-17.94
8.61
....
0.00
-26.72
0.30
eld
17:23:17.51
74:40:37.5
0.18069
18.01
1.095
-20.18
-21.18
10.02
-5.53
0.39
-21.72
0.21
eld
17:24:02.24
74:42:37.0
0.33906
18.85
1.709
-20.46
-22.00
10.49
-0.95
0.99
-3.18
0.40
eld
17:23:37.38
74:43:40.0
0.29567
18.02
1.610
-20.93
-22.43
10.66
1.50
0.67
0.67
0.25
eld
17:23:47.22
74:38:01.9
0.24012
17.91
1.212
-20.84
-21.98
10.39
2.47
0.58
1.78
0.18
eld
17:23:50.33
74:38:39.8
0.04373
18.69
1.516
-15.32
-16.93
8.48
....
....
-11.48
0.19
eld
17:23:55.07
74:42:40.0
0.33892
18.45
1.800
-20.79
-22.40
10.66
-9.00
0.91
0.97
0.44
eld
17:23:27.27
74:46:43.8
0.44623
18.36
2.172
-21.68
-23.40
11.09
4.18
0.47
....
....
eld
17:25:12.29
74:29:40.6
0.29537
19.17
1.210
-20.12
-21.26
10.11
-19.73
0.31
-48.69
0.45
eld
17:24:37.73
74:30:13.6
0.18489
19.49
1.168
-18.65
-19.75
9.49
-48.04
0.78
-32.86
0.40
eld
17:24:14.39
74:29:43.0
0.21837
19.06
0.920
-19.78
-20.61
9.73
-25.41
0.51
-26.11
0.43
eld
17:26:10.37
74:29:09.5
0.18043
18.17
1.046
-20.08
-21.02
9.94
-25.86
0.34
-29.13
0.18
eld
17:26:53.67
74:29:57.5
0.54749
19.25
2.087
-21.61
-23.16
10.95
-3.17
0.47
....
....
eld
17:26:54.96
74:31:35.9
0.27059
18.07
1.020
-21.16
-22.14
10.41
-0.55
0.24
10.24
0.62
eld
17:27:22.22
74:32:27.3
0.24178
19.18
0.881
-19.94
-20.76
9.78
-18.68
0.31
-19.77
0.22
eld
17:27:26.70
74:34:42.8
0.18050
19.03
1.057
-19.21
-20.16
9.60
-70.67
1.25
-13.85
0.18
eld
17:26:25.30
74:27:56.1
0.22819
18.78
1.348
-19.70
-20.96
10.03
-8.97
1.04
-15.25
0.47
eld
17:30:18.14
74:41:44.4
0.33812
18.31
1.818
-20.91
-22.54
10.73
2.78
0.72
-3.66
0.65
eld
17:29:50.08
74:42:24.7
0.24585
17.73
1.429
-20.86
-22.22
10.55
-6.09
0.50
-5.65
0.25
eld
17:30:45.34
74:41:21.3
0.31546
18.73
1.589
-20.44
-21.91
10.45
0.20
0.46
2.05
0.41
eld
17:30:05.41
74:40:00.7
0.15708
18.60
1.324
-18.97
-20.17
9.69
....
....
-3.98
0.41
eld
17:29:53.77
74:39:44.1
0.15745
17.39
1.226
-20.31
-21.42
10.15
....
....
-6.20
0.25
eld
17:29:01.00
74:40:07.9
0.27259
18.76
1.594
-19.96
-21.47
10.28
6.43
0.75
-6.25
0.30
eld
17:28:35.55
74:43:18.4
0.32074
18.43
1.319
-21.01
-22.24
10.52
-10.68
0.38
-15.00
0.40
group4
13:10:09.80
32:29:44.2
0.18593
18.05
1.416
-19.91
-21.28
10.20
2.90
0.38
0.17
0.18
group4
13:10:37.26
32:26:37.6
0.18599
17.17
1.017
-21.14
-22.14
10.26
-20.02
0.25
-27.48
0.30
group3
17:24:31.58
74:37:39.2
0.24194
18.17
1.709
-20.06
-21.72
10.41
-13.17
1.00
-2.97
0.21
group3
17:30:16.74
74:42:26.8
0.24230
18.69
1.510
-19.76
-21.21
10.17
5.14
0.64
3.05
0.24
group3
17:30:09.69
74:42:44.1
0.24513
18.45
1.431
-20.14
-21.49
10.25
-6.01
0.45
-4.50
0.21
group3
17:29:48.60
74:42:15.0
0.24404
17.93
1.503
-20.56
-21.99
10.47
3.07
1.35
2.55
0.38
group2
17:25:34.22
74:28:54.1
0.04133
17.43
0.962
-17.42
-18.34
(2)
membership
(3)RA
(4)DEC
(5)z
(6)I
[mag]
(7)V-I[mag]
(8)MB[mag]
(9)MR[mag]
(10)log(M )[M⊙]8.81
(11)[Oii][Å]....
(12)E([Oii])
[Å]
....
(13)Hα[Å]-8.52
(14)E(Hα)[Å]0.11
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in intrinsi
(1)IDr2621
06r2621
10r2621
18r2631
03r2631
05r2631
01r2632
05r2632
14r2632
11r2651
03r2651
07r2651
11r2651
13r2651
12ar2812
23r2812
26r2821
23r2821
24r2831
08r2831
16r2831
18r2841
09r2841
13r2841
19ar2851
06r2851
eld
09:44:07.29
16:29:22.8
0.23247
17.24
1.355
-21.25
-22.70
10.73
1.15
0.69
-1.32
0.17
eld
09:44:20.04
16:30:28.5
0.23338
17.51
1.290
-21.03
-22.49
10.63
-2.40
0.47
-3.95
0.15
eld
09:44:32.35
16:28:34.4
0.15980
18.91
1.039
-18.87
-20.08
9.47
-8.75
1.07
....
....
eld
09:44:38.51
16:27:52.5
0.23310
17.25
1.330
-21.14
-22.58
10.74
1.08
0.92
-3.37
0.23
eld
09:42:51.23
16:41:08.8
0.23352
17.07
1.118
-21.63
-22.86
10.70
-5.96
0.39
-22.38
0.31
eld
09:42:56.10
16:41:13.4
0.23116
18.63
1.252
-20.17
-21.21
9.79
-9.85
1.60
-20.22
0.95
eld
09:43:12.49
16:44:30.0
0.17047
17.87
1.241
-19.84
-21.31
10.25
....
....
-8.77
0.62
eld
09:43:23.20
16:40:38.3
0.16715
18.83
1.230
-18.89
-20.24
9.70
-21.56
1.01
-28.55
0.41
eld
09:43:28.76
16:37:53.2
0.18995
18.08
1.182
-20.06
-21.27
10.19
0.77
2.50
3.92
1.62
eld
09:43:51.93
16:45:45.2
0.21565
19.33
1.746
-18.67
-20.54
9.73
....
....
-0.58
1.05
eld
09:43:55.30
16:44:48.9
0.16487
18.46
1.398
-19.09
-20.51
9.91
12.44
7.53
4.62
0.50
eld
09:43:58.66
16:43:04.5
0.16614
18.56
0.943
-19.73
-20.44
9.39
....
....
-45.42
1.74
eld
13:11:07.05
32:17:24.8
0.40657
18.66
2.031
-21.48
-22.96
10.85
2.88
0.24
....
....
eld
13:10:59.78
32:18:39.0
0.40701
18.66
1.716
-21.32
-22.73
10.76
-3.53
0.18
....
....
eld
13:10:46.66
32:21:16.7
0.30771
18.66
1.317
-20.69
-22.01
10.44
0.53
0.18
0.38
0.17
eld
13:10:40.07
32:20:47.8
0.55177
18.00
1.669
-23.20
-24.32
11.22
-14.19
0.11
....
....
eld
13:10:03.30
32:21:30.2
0.28419
18.66
1.508
-20.38
-21.83
10.44
-13.38
1.20
-39.16
2.26
eld
13:10:38.86
32:28:04.1
0.30783
19.37
1.571
-19.69
-21.14
10.06
-23.37
1.36
-16.20
1.24
eld
13:10:23.46
32:29:52.4
0.40813
19.41
1.099
-20.92
-21.75
10.00
-36.95
0.27
....
....
eld
13:10:09.53
32:26:28.6
0.12557
18.07
1.184
-19.04
-20.25
9.73
....
....
....
....
eld
13:10:19.66
32:29:34.4
0.25985
18.90
1.514
-20.00
-21.00
9.75
-57.95
1.65
-8.50
0.40
eld
13:10:16.97
32:29:06.1
0.12306
16.99
1.228
-20.25
-21.28
10.02
....
....
-11.70
0.27
eld
13:11:28.25
32:28:06.1
0.43404
18.58
2.144
-21.45
-23.28
11.03
-4.27
0.23
....
....
eld
13:11:12.39
32:32:06.0
0.30175
18.37
1.359
-21.15
-22.32
10.49
-9.52
0.17
-12.55
0.16
eld
13:11:05.84
32:29:57.6
0.30678
18.87
1.875
-19.98
-21.76
(2)
membership
(3)RA
(4)DEC
(5)z
(6)I
[mag]
(7)V-I[mag]
(8)MB[mag]
(9)MR[mag]
(10)log(M )[M⊙]10.45
(11)[Oii][Å]-3.45
(12)E([Oii])
[Å]0.27
(13)Hα[Å]-1.38
(14)E(Hα)[Å]0.17
正在阅读:
The galaxy populations from the centers to the infall regions in z~0.25 clusters06-04
比较优势-水性环氧漆04-25
《c++语言程序设计教程》习题及解答01-17
2018-2019学年辽宁省普通高中学生学业水平模拟考试语文试题 Word版含答案10-27
北京大学软件与微电子学院07-05
钢结构施组03-28
实验室气瓶气体安全05-25
基于CRM的医学图书馆知识服务体系构建07-24
实验3 指令调度和延迟分支05-11
- 1The Age Of Globular Clusters In Light Of Hipparcos Resolving
- 2Superconductivity and Chiral Symmetry Breaking with Fermion Clusters
- 3Galaxy Interactions and Starbursts at High Redshift
- 4HP工作站 BIOS说明 适用Z228 Z440 Z230 Z640 Z840 Z800 Z620 Z42
- 5NGC 7468 a galaxy with an inner polar disk
- 6Search for Compact Extragalactic Radio Sources Near Massive Star Forming Regions
- 7High clonal diversity in threatened peripheral populations of the yellow bird’s
- 8HP工作站BIOS说明适用Z228Z440Z230
- 9A Interpretation of The Kite Runner from
- 10From Made in China to Designed in China
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- populations
- clusters
- centers
- regions
- galaxy
- infall
- 0.25
- 爱我家乡 爱我学校(三2班主题班会)
- 如何考注册会计师
- 质量检验的基本知识
- 第一节 流动负债概述
- 屈原列传教学设计
- 最新牛津初中英语7A-9B单词默写
- 2015年北京市各区高三理科数学分类汇编----平面向量
- 局部牙槽骨缺损自体下颌块状骨onlay植骨重建种植技术
- 江苏省苏州市2016年中考数学模拟试卷(四)含答案
- 柴油和汽油的性能区别
- 第十章 管理沟通
- 房地产置业顾问营销策略
- 2013年全国高考理科数学试题分类汇编1:集合
- 中国青年政治学院法硕考研复试辅导班有好的介绍吗
- 16春 东财《电子商务网站建设》在线作业三(随机)
- “寻根文学”的得失——以韩少功《爸爸爸》为例
- 暖通毕业设计指导书
- 模电第3章二极管
- 百货商场托管协议书
- 我国肿瘤治疗将进入微创手术时代中国肿瘤微创治疗技术创新战略联盟在京成立