年全国中考数学压轴题精选精析

更新时间:2024-04-16 08:35:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2009年全国中考数学压轴题精选精析(二)

13.(09年广东茂名)25.(本题满分10分)

已知:如图,直线l:y?1?1?x?b,经过点M?0,?,一组抛物线的顶点34??(n为正整数)依次是直线l上的点,B1(1,y1),B2(2,y2),B3(3,y3),?,Bn(n,yn)这

线

x轴正半轴的交点依次是:

,设x1?d A1(x1,,0)A2(x2,,0)A3(x3,,0)?,An?1(xn?1,0)(n为正整数)(0?d?1). (1)求b的值;

(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示)

(2分) (4分)

(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物

线就称为:“美丽抛物线”. (0?d?1)探究:当d的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值. (4分)

l y Bn

B3

B2

B1

? M

O A1 1 A22 A3 3 A4An n An?1 x (第25题图)

(09年广东茂名25题解析)解:(1)∵M?0,?在y???1?4?111x?b上,∴??0?b,∴3431. ··································································································································· 2分 411 (2)由(1)得:y?x?, ∵B1(1,y1)在l上,

34b? ∴当x?1时,y1?117?7??1??,∴B1?1,?. ············································· 3 分 341212??2解法一:∴设抛物线表达式为:y?a(x?1)?27(a?0), ············································· 4分 1277,∴a??, ················· 5 分 1212(d?1)2 又∵x1?d, ∴A0),∴0?a(d?1)?1(d,1

∴经过点A1、B1、A2的抛物线的解析式为:y??解法二:∵x1?d,∴A0),A2(2?d,0), 1(d,772. ············· 6 分 (x?1)?212(d?1)12(x?2?d)(a?0), ∴设y?a(x?d)?················································································ 4 分

把B1?1,?代入:

?7??12?77?a(1?d)?(1?2?d),得a??, ······························ 5 分 21212(d?1)∴抛物线的解析式为y??7············································· 6 分 (x?d)?(x?2?d). ·

12(d?1)2(3)存在美丽抛物线. ········································································································ 7 分 由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵0?d?1,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于 1.

117?1???1, 34121111?1, 当x?2时,y2??2??3412111当x?3时,y3??3??1?1,

344∵当x?1时,y1?

y Bn l B3 B1 M O A1 1 B2 ? A22 A3 3 A4An n An?1 x

∴美丽抛物线的顶点只有B1、B2.······················································································· 8分 ①若B1为顶点,由B1?1,?,则d?1??7??12?75?; ·························································· 9分 1212②若B2为顶点,由B2?2,?,则d?1???2?综上所述,d的值为

?11??12?????11??11??1?, 12???12511或时,存在美丽抛物线. ······················································· 10分 121214.(09年广东梅州)23.本题满分 11 分.

2

(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)

1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线如图 12,已知直线L过点A(0,交L于点Q,交x轴于点M. (1)直接写出直线L的解析式;

(2)设OP?t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0?t?2时,

S的最大值;

(3)直线L1过点A且与x轴平行,问在L1上是否存在点C, 使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

y

L L1

A Q

x O M P B

图12

(09年广东梅州23题解析)(1)y?1?x ········································································· 2分 (2)∵OP?t,∴Q点的横坐标为①当0?1t, 211t?1,即0?t?2时,QM?1?t, 22∴S△OPQ?1?1?····································································································· 3分 t?1?t?. ·

2?2?11t?t?1, 22②当t≥2时,QM?1?∴S△OPQ?1?1?t?t?1?. 2?2??1?1?0?t?2,?2t?1?2t?,???∴S?? ······························································································ 4分

?1t?1t?1?,t≥2.?????2?2当0?11?1?11t?1,即0?t?2时,S?t?1?t???(t?1)2?, 22?2?443

∴当t?1时,S有最大值

1. ······························································································ 6分 4(3)由OA?OB?1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ?QC,所以OQ?QC,又L1∥x轴,则C,

O两点关于直线L对称,所以AC?OA?1,得C(11),. ················································ 7 分

下证?PQC?90°.连CB,则四边形OACB是正方形.

y 法一:(i)当点P在线段OB上,Q在线段AB上 (Q与B、C不重合)时,如图–1.

由对称性,得?BCQ??QOP,?QPO??QOP, ∴ ?QPB??QCB??QPB??QPO?180°,

∴ ?PQC?360°?(?QPB??QCB??PBC)?90°. ················································· 8分 (ii)当点P在线段OB的延长线上,Q在线段AB上时,如图–2,如图–3

∵?QPB??QCB,?1??2, ∴?PQC??PBC?90°. ·························· 9分 (iii)当点Q与点B重合时,显然?PQC?90°. 综合(i)(ii)(iii),?PQC?90°.

O P B 23题图-1 x L A Q C L1

,,使得△CPQ是以Q为直角顶点的等腰直角三角形. ·∴在L1上存在点C(11)··········· 11 分

y L A Q O 2 1 y L C L1 A 1 C L1 P B 23题图-2 x O B 2 Q P x 23题图-3

法二:由OA?OB?1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ?QC,所以OQ?QC,又L1∥x轴, 则C,

O两点关于直线L对称,所以AC?OA?1,得C(11),. ·············································· 7 分

4

延长MQ与L1交于点N.

(i)如图–4,当点Q在线段AB上(Q与A、B不重合)时, ∵四边形OACB是正方形,

∴四边形OMNA和四边形MNCB都是矩形,△AQN和△QBM都是等腰直角三角形. ∴NC?MB?MQ,NQ?AN?OM,?QNC??QMB?90°. 又∵OM?MP, ∴MP?QN, ∴△QNC≌△QMP, ∴?MPQ??NQC, 又∵?MQP??MPQ?90°, ∴?MQP??NQC?90°.

∴?CQP?90°. ············································································································ 8分 (ii)当点Q与点B重合时,显然?PQC?90°. ·············································· 9分 (iii)Q在线段AB的延长线上时,如图–5, ∵?BCQ??MPQ,∠1=∠2 ∴?CQP??CBM?90°

综合(i)(ii)(iii),?PQC?90°.

O P B 23题图-1 x L A Q y C L1

,,使得△CPQ是以Q为直角顶点的等腰直角三角形. ·∴在L1上存在点C(11)······· 11分

y y L A Q O O M P B 23题图-4 x B N C L1

L A 1 C L1 2 Q P x 23题图-5

法三:由OA?OB?1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ?QC,所以OQ?QC,又L1∥x轴,

5

,. · 则C,O两点关于直线L对称,所以AC?OA?1,得C(11)······················· 9分

连PC,∵PB?|1?t|,OM?1tt,MQ?1?, 22∴PC2?PB2?BC2?(1?t)2?1?t2?2t?2,

2?t??t?t22222OQ?OP?CQ?OM?MQ?????1????t?1.

2?2??2?22∴PC2?OP2?QC2,∴?CQP?90°. ······································································· 10分

,,使得△CPQ是以Q为直角顶点的等腰直角三角形. ·∴在L1上存在点C(11)·········· 11分

15.(09年广东清远)28.如图9,已知一个三角形纸片ABC,BC边的长为8,BC边上

的高为6,?B和?C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h.

A (1)请你用含x的代数式表示h.

(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所

BCNM重在平面,设点A落在平面的点为A1,△A1MN与四边形

叠部分的面积为y,当x为何值时,y最大,最大值为多少?

(09年广东清远28题解析)解:(1)?MN∥BC ?△AMN∽△ABC

M N

B 图9

C

hx?? 683x?h? ····································································· 3分

4(2)?△AMN≌△A1MN

?△A1MN的边MN上的高为h,

①当点A1落在四边形BCNM内或BC边上时,

1133·h?x·x?x2(0?x≤4) ························································ 4分 y?S△A1MN=MN2248

6

②当A1落在四边形BCNM外时,如下图(4?x?8), EF上的高为h1, 设△A1EF的边

则h1?2h?6?A

3x?6 2M N

?EF∥MN?△A1EF∽△A1MN

B

E A1

F

C

?△AMN∽△ABC?△A1EF∽△ABC 1S△A1EFS△ABC?h???1? ?6?21?S△ABC??6?8?24 ?S△A1EF2?3?x?6?2?32???2???24?x?1x62????22 439?3??y?S△A1MN?S△A1EF?x2??x2?12x?24???x2?12x?24

88?2?所以 y??92x?12x?248(4?x?8) ············································································ 6分 32x,取x?4,y最大?6 8综上所述:当0?x≤4时,y?当4?x?8时,y??取x?92x?12x?24, 816,y最大?8 3?8?6

16····················································································· 8分 ?当x?时,y最大,y最大?8 ·

316.(09年广东汕头)24.(本题满分12分)正方形ABCD边长为4,M、NA 分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,

(1)证明:Rt△ABM∽Rt△MCN;

(2)设BM?x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积; (3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求x的值.

7

D

N

B

M

第24题图

C

(09年广东汕头24

AB?BC?C4?,D??AM?MN,

A ??AMN?90°,

??CMN??AMB?90°.

在Rt△ABM中,?MAB??AMB?90°, ??CMN??MAB,

?Rt△ABM∽Rt△MCN. ······················································· 3分 (2)?Rt△ABM∽Rt△MCN, ABBM4xB ??,??, MCCN4?xCN题解析)解:(1)在正方形ABCD中,

?B?9°0C?,

D

N

M

答案24题图

C

?x2?4x?CN?, ···················································································································· 5分

4?y?S梯形ABCN?1??x2?4x11???4??4??x2?2x?8??(x?2)2?10, 2?422?当x?2时,y取最大值,最大值为10. ··················································································· 7分 (3)??B??AMN?90°,

?要使△ABM∽△AMN,必须有

由(1)知

AMAB?, ································································ 9分 MNBMAMAB?, MNMC?BM?MC,

··································· 12分 ?当点M运动到BC的中点时,△ABM∽△AMN,此时x?2. ·

(其它正确的解法,参照评分建议按步给分)

17.(09年广东深圳)23.(本题10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA

(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式。(4分)

(2)如图12,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。 ①当△BDE是等腰三角形时,直接写出此时点E的坐标。(3分) ....

[来源学。科。网]②又连接CD、CP(如图13),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由。(3分)

8

图11

-10 [来源:学科网]6543CE2216E3D2A-8-6-4-2E1454O-1-2B6810123C21MD2P4-3-6-4-2AO-1-2B681012-4 -5-3图 图

(09年广东深圳23题解析)

(1) 由Rt△AOC∽Rt△COB易知,CO2=OA.OB=OA(AB-OA),可求OA=1,OB=4

-6-4∴A(-1,0) B(4,0) C(0,2) 可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,可求a=?1 2123x?x?2为所求 221484215,5)提示:(2) E1(3,);E2(,) E3(4?直线BC的解析式为y??x?2255552∴y??设E(x,y),利用勾股定理和点E(x,y)在直线BC上,可得两个方程组

1??y??x?2 2??(2?x)2?y2?22?1??y??x?2分别可求E2和E3 2?2?(4?x2)?y2?2?n?2x?2,且m(3) 过D作X轴的垂线,交PC于M,易求PC的解析式为y?M(2,2n?4?2),故 m9

1S?CDP?S?CDM?S?DMP?(xP?xC)(yM?yD)2112n?4?xP?yM?m(?2)?m?n?222m

123?m?(?m?m?2)?22215??m2?m22525521时,S?CDP最大值?,P(,)

828218.(09年广东湛江)28.已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建

立平面直角坐标系;点P是OA边上的动点(与点O、A不重合),现将△POC沿PC翻折 得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD翻折,得到△PFD,使得 直线PE、PF重合.

(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函

故,当m?数关系式;

(2)若点E落在矩形纸片OABC的内部,如图②,设OP?x,AD?y,当x为何值时,y取得最大值?

(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标

y y E B C C

F

E

F D

O P O P x A

图② 图①

[来源:学科网ZXXK]B D A x 第28题图

△PAD均为等腰直角三角形, (09年广东湛江28题解析)解:(1)由题意知,△POC、0)C(0,、3)D(41), 可得P(3,、······························································································· 2分

10

y C E y B C F E B F D D O 图①

P A x O P 图②

A x 第28题图

?c?3?设过此三点的抛物线为y?ax2?bx?c(a?0),则?9a?3b?c?0

?16a?4b?c?1?1?a??2??b??5 ??2???c?3?125x?x?3 ······································ 4分 22(2)由已知PC平分?OPE,PD平分?APF,且PE、PF重合,则?CPD?90° ??OPC??APD?90°,又?APD??ADP?90° ??OPC??ADP.

?Rt△POC∽Rt△DAP.

?过P、C、D三点的抛物线的函数关系式为y??OPOCx3?,即? ······························································································ 6分 ADAPy4?x?y?11414x(4?x)??x2?x??(x?2)2?(0?x?4) 333334 ·························································································· 8分 ?当x?2时,y有最大值.3(3)假设存在,分两种情况讨论:

①当?DPQ?90°时,由题意可知?DPC?90°,且点C在抛物线上,故点C与点Q重合,所求的点Q为(0,3) ············································································································· 9分 ②当?DPQ?90°时,过点D作平行于PC的直线DQ,假设直线DQ交抛物线于另一点

11

Q,0)C(0,3),?直线PC的方程为y??x?3,将直线PC向上平移2个单位?点P(3,、与直线DQ重合,?直线DQ的方程为y??x?5 ······························································ 10分

?y??x?5?x??1?x?4?由?得?或? 125y?6y?1y?x?x?3????22,,?Q(?1,.6) 又点D(41)3)(?1,6)满足条件. 故该抛物线上存在两点Q(0,、······························································ 12分

[来源学。科。网]y Q C (Q) E B F D x O

P A 第28题图

说明:以上各题如有其他解(证)法,请酌情给分. 19.(09年广东肇庆)25.(本小题满分 10 分)

⊙O的直径AB?2,AM 和BN是它的两条切线,DE切⊙O于E,如图 9,交AM于D, 交BN 于C.设AD?x,BC?y. (1)求证:AM∥BN;

(2)求y关于x的关系式;

(3)求四边形ABCD的面积S,并证明:S≥2.

A D M

E

O

B C

图9

(09年广东肇庆25题解析)(1)证明:∵AB是直径,AM、BN是切线,

N 12

∴AM⊥AB,BN⊥AB,∴AM∥BN. ·················· (2 分) 解:(2)过点D作 DF⊥BC于F,则AB∥DF. 由(1)AM∥BN,∴四边形ABFD为矩形. ∴DF?AB?2,BF?AD?x. ·································· (3 分) ∵DE、DA,CE、CB都是切线, ∴根据切线长定理,得

A O B D E M DE?DA?x,CE?CB?y. ······································ (4 分)

F 图9

C N 在Rt△DFC中,DF?2,DC?DE?CE?x?y,CF?BC?BF?y?x, ∴(x?y)2?22?(y?x)2, ·················································································· (5 分)化简,得y?

[来源学科网ZXXK]1(x?0). ······························································································· (6分) x(3)由(1)、(2)得,四边形的面积S?111??AB(AD?BC)??2??x??, 22x??即S?x?1(x?0). ···································································································· (8分) x21?1?1??∵?x???2?x?2???x?≥0,当且仅当x?1时,等号成立. ?x?x?x??∴x?1≥2,即S≥2. ·························································································· (10分) x20.(09年广东)22. 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,

A(1)证明:Rt△ABM ∽Rt△MCN;

(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积; (3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN, 求此时x的值.

(09年广东22题解析)(1)证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∠ABM+∠BAM=90°

∵∠ABM+∠CMN+∠AMN=180°,∠AMN=90°∴∠AMB+∠CMN=90°∴BM∠BAM=∠CMN 第22题图∴Rt△ABM∽Rt△MCN

[来源:学科网ZXXK]DNC(2)∵Rt△ABM∽Rt△MCN,∴

AB BM4xx(4?x)=,?即解得:CN? MCCN4-xCN4∵S梯形=11x(4?x)??4?4, ?CN+AB?BC ∴y=??22?4??1x?2x?8 2 即:y??13

又∵y??1112x?2x?8=-?x2?4x?4?4??8???x?2??10 222∴当x=2时,y有最大值10.

∴当M点运动到BC的中点时,四边形ABCN的面积最大,最大面积是10. (3)∵Rt△ABM∽Rt△MCN,∴

4ABBM??,即2AMMNx?16x?x?4?x??24?x?????4??2

化简得:x2?16???x?2??0,解得:x=2

∴当M点运动到BC的中点时Rt△ABM ∽Rt△AMN,此时x的值为2. 21.(09年广西来宾)26.(本小题满分12分)

当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.

(1)求该抛物线的关系式;

(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小; (3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E

y 的坐标;若不存在,则说明理由.

[来源:Z|xx|k.Com]

????1分

因为点C(0,3)在抛物线上

[来源:Zxxk.Com]3 C E D F O B A x (第26题图)

(09年广西来宾26题解析)解:(1)由题意可设抛物线的关系式为y=a(x-2)2-1

??????????2分

??3分

所以3=a(0-2)2-1,即a=1

所以,抛物线的关系式为y=(x-2)2-1=x2-4 x+3

(2)∵点M(x,y1),N(x+1,y2)都在该抛物线上

∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x ????4分

3时,y1>y2 23

当3-2 x=0,即x?时,y1=y2

23

当3-2 x<0,即x?时,y1<y2

2

当3-2 x>0,即x?????????????5分 ????????????6分 ????????????7分

(3)令y=0,即x2-4 x+3=0,得点A(3,0),B(1,0),线段AC的中点为D(

直线AC的函数关系式为y=-x+3

????????????8分

14

33,) 22因为△OAC是等腰直角三角形,所以,要使△DEF与△OAC相似,△DEF也必须是等腰直角三角形.由于EF∥OC,因此∠DEF=45°,所以,在△DEF中只可能以点D、F为直角顶点.

①当F为直角顶点时,DF⊥EF,此时△DEF∽△ACO,DF所在直线为y?

3

2

由x?4x?3?234?104?10,解得x?,x??3(舍去) 222??9分

将x?4?104?102?10代入y=-x+3,得点E(,) ????10分 222②当D为直角顶点时,DF⊥AC,此时△DEF∽△OAC,由于点D为线段AC的中点,因此,DF所在直线过原点O,其关系式为y=x.

解x2-4 x+3=x,得x?5?135?13,x??3(舍去) 22????11分

将x?5?135?131?13代入y=-x+3,得点E(,) ????12分

222y 3 C F O B E D F A x O B A x

y 3 C E D (第26题图⑴) (第26题图⑵)

22.(09年广西崇左)25.(本小题满分16分)

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,

2),点C(?1,0),如图所示:抛物线y?ax2?ax?2经过点B. 且点A(0,(1)求点B的坐标;

(2)求抛物线的解析式; (3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由. y

A (0,2)

B

15

(-1,0) C x (第25题)

(09年广西崇左25题解析)(1)过点B作BD?x轴,垂足为D, y ??BCD??ACO?90°,?ACO??CAO?90° ??BCD??CAO; ····················································· 1分

又??BDC??COA?90°;CB?ACA , ?△BCD≌△CAO, ··················································· 2分

B N P2 ?BD?OC?1,CD?OA?2 ···································· 3分

D C O M ?点B的坐标为(?31),;················································ 4分 P1 (2)抛物线y?ax2?ax?2经过点B(?31),,则得到1?9a?3a?2, ·

························· 5分 解得a?12,所以抛物线的解析式为y?12x2?12x?2; ·················································· 7分 (3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:

①若以点C为直角顶点;

则延长BC至点P1,使得PC1?BC,得到等腰直角三角形△ACP1, ····························· 8分 过点P1作PM1?x轴, ?CP1?BC,?MCP1??BCD,?PMC1??BDC?90°; ?△MPC1≌△DBC ··········································································································· 10分 ?CM?CD?2,PM1?BD?1,可求得点P1(1,-1); ············································· 11分 ②若以点A为直角顶点;

则过点A作AP2?CA,且使得AP2?AC,得到等腰直角三角形△ACP2, ··············· 12分 过点P2作P2N?y轴,同理可证△AP2N≌△CAO; ············································ 13分[来源学科网ZXXK]

?NP2?OA?2,AN?OC?1,可求得点P2(2,1); ····················································· 14分 经检验,点P11(1,?1)与点P2(2,1)都在抛物线y?2x2?12x?2上. ······························ 16分 23.(09年广西桂林)26.(本题满分12分)如图,已知直线l:y?34x?3,它与x轴、y轴的交点

分别为A、B两点.

(1)求点A、点B的坐标;

(2)设F是x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法和证明,保留作图痕迹);

16

x (3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y与x的函数关系式;

[来源:Z。xx。k.Com]

(4)是否存在这样的⊙P,既与x轴相切又与直线l相切于点B,若存在,求出圆心P的坐标;若不存在,请说明理由. y

B

V

A

· x O F

第26题图

(09年广西桂林26题解析)解(1)A(?4,0),B(0,3) ······· 2分(每对一个给1分) (2)满分3分.其中过F作出垂线1分,作出BF中垂线1分,找出圆心并画出⊙P给1分.

(注:画垂线PF不用尺规作图的不扣分)

(3)过点P作PD⊥y轴于D,则PD=x,BD=3?y, ··········· 6分

PB=PF=y,∵△BDP为直角三形, ∴ PB?PD?BD

∴BP?PD?BD ······························· 7分 即y?x?3?y 即y?x?(3?y) ∴y与x的函数关系为y?222222y B D A O F P 222222x 123x? ················································································· 8分 62(4)存在

解法1:∵⊙P与x轴相切于点F,且与直线l相切于点B ∴AB?AF ························································································································· 9分 ∵AB?OA?OB?5 ∴AF?5

∵AF=x?4 , ∴(x?4)?5 ·················································································· 10分 ∴x?1或x??9 ················································································································· 11分 把x?1或x??9代入y?222222221235x?,得y?或y?15623

[来源学科网]17

∴点P的坐标为(1,

5)或(?9,15) ··········································································· 12分 324.(09年广西河池)26. (本小题满分12分)

如图12,已知抛物线y?x2?4x?3交x轴于A、B两点,交y轴于点C,?抛物线的对称轴交x轴于点E,点B的坐标为(?1,0). (1)求抛物线的对称轴及点A的坐标;

(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由; (3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

(09年广西河池25题解析)(1)① 对称轴x??② 当y?0时,有x?4x?3?0 解之,得 x1??1,x2??3

∴ 点A的坐标为(?3,0). ········································································· (4分) (2)满足条件的点P有3个,分别为(?2,3),(2,3),(?4,?3). ······· (7分) (3)存在. ···················································································································· (8分)

当x?0时,y?x?4x?3?3 ∴ 点C的坐标为(0,3)∵ DE∥y轴,AO?3,EO?2,AE?1,CO?3

2[来源学。科。网Z。X。X。K]y C D A E B O x 图12 4??2·········································· (2分) 22

18

∴ △AED∽△AOC ∴ ∴ S梯形DEOC?AEDE1DE? 即 ? ∴ DE?1 ·················· (9分) AOCO331?(1?3)?2?4 2414在OE上找点F,使OF?,此时S△COF???3?2,直线CF把四边形DEOC

323分成面积相等的两部分,交抛物线于点M. ····························································· (10分)

设直线CM的解析式为y?kx?3,它经过点F??,0?.

?4?3??4k?3?0 ·································································································· (11分) 399解之,得 k? ∴ 直线CM的解析式为 y?x?3 (12分)

44则?19

本文来源:https://www.bwwdw.com/article/0u4p.html

Top