华南理工2001年数学分析答案解析

更新时间:2024-03-21 08:05:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

华南理工2001年数学分析考研试题解答

一.1.解 limx?0sinx1?xsinx?sinx22 cosx ?limx?0?1?xsinx?cosxsinxx221?xsinx?cosx?

? ?2limx?02xsinx?xcosx?sinx

2limx?01sinxx11?12??cosx243

?2limx?0.

2.证明 对0?2x?22, ,知 x221?1?由x?x??x???2?4?2?x??14,x?12,

1?1?1?1?2x?x??x?????2????22?4?2?4?1,

于是e4故有2e?e14x?x2?e2,?x???1??2?,

??n?n20ex?x2dx?2e2.

3.解 n!?,

lnn!?nlnn, ,

?1nlnn??1lnn!?n?21nlnn20发散,所以?n?21ln?n!?f发散.

24.解 ?f?x?1?dx??010?x?1?dx??11f?x?1?dx

??f?t?dt???10 ??t?11?e0f?t?dtetdt??1011?tdt ?ln?1?et?0?1?ln?1?t??110

? ??ln2?ln?1?e??ln2 ?.

2ln2?ln?1?en?15.解 由ee?1xx?x?1??n?1xn!,

??n?1xn?1n!?,

d?e?1????dx?x?x?n?1?n?1?xn!n?2,

显然它的收敛区间为???,???,

??nn?1?n?1?!??n?1??1?n?1!??n?1????n?11n!???1n?1?n?1?!

??e?1???e?2??1; 6.解 f?0,y??fx?0,0??0ysin21y,f?x,0??,

xsin21x,

fy?0,0??0当?x,y???0,0?时,

1x?y22fx?x,y??2xsin??x?y22?cos1x?y22?x??3?222??x?y???y??3?222??x?y????????????,

fy?x,y??2ysin1x?y22??x?y22?cos1x?y22,

当当

?x,y???0,0?limfx?x,y?不存在,fx?x,y?在?0,0?fy?x,y?不存在,fy?x,y?在?0,0????y??02处不连续, 处不连续,

?x,y???0,0?2lim当??x?时,

f??x,?y????f(0,0)???x?2fx?0,0??x?fy?0,0??y?????y?12

???x?2???y?sin2??x?2???y?2?0,

所以f?x,y?在点?0,0?处可微. 二.已有,简略。 三.证明 实际上u?ln?x?y22?,??arctanyx.

四.解 利用高斯公式,得

I???xzdydz?yzdzdx?zx?ydxdy22

?????z?z?Vx?y22?dxdydz

?rsin???rsin?dr2??2?0?d???40d??2aa2aa3?2rcos?

?2??40d??r?2cos??440?sin??sin?dr

?2?14[(2a)?a]?4?2cos??sin??sin?d??2?11?cos2???[(2a)?a]?4?2sin?cos???d?042??44?

?2?11?cos2???[(2a)?a]?4?2sin?cos???d?042??44?

?2?14[(2a)?a](44412?1?24?14)

?15(??2)?a16 。

x?yx?4y2五.解 设P?P?y2?22,P?Q?x?x?4yx?4y222,

2??x?8xy?4y?x2?4y2?2,

??x?8xy?4y?x2?4y2?2,?x,y???0,0?,

?P?y??Q?x,?x,y???0,0?,

:x?4y??222取?I??0充分小,C?,

?Pdx?Qdy

C ??C?Pdx?Qdy

?1?2??x?y?dx??x?4y?dy

C? ? ?1?2??2dxdy

D?1?2?2?????2??. 时,

13六.解 当?1?fx?0?x????1t?0xtdt??x?1t??t?dt???1?x?,

3当xf时,

x?x????1t?13tdt??0?1ttdt??x0ttdt

?显然yS??13x3,

??1,x?1,

?f?x?与x轴的交点为x3?0?113?1?x?dx??3?1?x?dx

3011 ? ?1323??1111144??0???1??????33434?111??322

.

xn七.证明 设un?x????1?x?,un?x??0,un?x?在?0,1?上连续,

2?u?x??x?1?x?在?0,1?上连续,

nn?1?根据狄尼定理,知?n?1un?x?在?0,1?上一致收敛.

利用几何平均-算数平均不等式,得

0?un?x??xn?1?x?2?n2n2n?2?n?2?11?n??4???4?22?n?2??n?2??n?2?n,

?由于?n?141?n?2?2收敛,

?所以?n?1un?x?在?0,1?上一致收敛.

八.简略

x??九.证明 证法一 limSn?x??limln?1???lnex?xn??n??n??limSn?x??xn??n,

在?0,a?上连续,

Sn?x?在?0,a?上连续,对每一个x??0,a?,?Sn?x??单调递增,

由狄尼定理,?Sn?x??在?0,a?上一致收敛.

证法二 由ln?1?z??z?12z?o?z222?,

2?x?x?1x??o?对0?x?a,有nln?1???x??n?2n??n?,

从而知?Sn?x??在?0,a?上一致收敛.

由于?n?supx??0,???Sn?x??Sn?n??nln2???,?n????,

故?Sn?x??在?0,???上不一致收敛. 十.简略.

本文来源:https://www.bwwdw.com/article/0tw8.html

Top