Experimental study of an auto-controlled automobile air conditioning system with an externally-contr
更新时间:2023-05-12 19:18:01 阅读量: 实用文档 文档下载
- experiences推荐度:
- 相关推荐
压缩机
AppliedThermalEngineering27(2007)
927–933
/locate/apthermeng
Experimentalstudyofanauto-controlledautomobileair
conditioningsystemwithanexternally-controlled
variabledisplacementcompressor
Zhao-gangQi
a
a,*
,Jiang-pingChena,Zhi-jiuChena,WeiHub,BinHe
c
InstituteofRefrigerationandCryogenics,ShanghaiJiaoTongUniversity,Shanghai200030,PRChinab
ShanghaiDelphiAutomotiveAirConditioningSystemCo.Ltd.,Shanghai201204,PRChinac
ShanghaiSANDENBEHRAutomobileAirConditioningCo.Ltd.,Shanghai200025,PRChina
Received11May2006;accepted28August2006
Availableonline27October2006
Abstract
Inthispaper,anexperimentalstudyofanauto-controlledmobileairconditioning(MAC)systemwithanexternally-controlledvar-iabledisplacementcompressor(EVDC)isperformedandanalyzed.AnewdisplacementcontrolmethodofEVDCisdevelopedconcern-ingaboutevaporatorcharacteristicsandin-cartemperature uctuation,whichindicatethequalityoftheMACsystem.Basedonoccupant’sthermalcomfort,thewind-tunneltestresultsshowthattheMACsystemwithanEVDCcanmaintainthedeviationofin-cartemperaturenomorethan2°Ccomparedwiththeoccupants’desiredone.ThisMACsystemgivestheoccupantsagoodthermalcomfortsensationintherapidchangingenvironment.ThecomparisonshowsthatthedischargepressurechangesofEVDCvaryfasterthanthatofthe xeddisplacementcompressor,whichre ectsthee ectoftheinternalclimatechanges.Ó2006ElsevierLtd.Allrightsreserved.
Keywords:Mobileairconditioning(MAC);Externally-controlledvariabledisplacementcompressor(EVDC);Controllogic;Performance
1.Introduction
Theoperationconditionofmobileairconditioning(MAC)systemisconsiderablydi erentfromtheresidentialairconditioning.Theambienttemperature,solarradiation,vehiclespeedhavegreatin uencesonthesystemperfor-mance.Itisatypicaltransient,nonlinear,complicatedandparameter-coupledsystem.Recently,withtheuseofexternally-controlledvariabledisplacementcompressors(EVDC)inMACindustry,agreatnumberofcontrollogicsofadjustingEVDCcharacteristicsmaketheMACsystemmorecomplicated.Nowadays,oneoftheresearchempha-sesforengineersandautomotiveindustryistocombinethesecharacteristicsintothecontrolstrategyandtodeveloptheadvancedandhighe ectivecontrollingdevices.
*
Correspondingauthor.Tel.:+862162933242;fax:+862162932601.E-mailaddress:qizhaogang@(Z.-g.Qi).
ItisacommonthoughtthattheliteratureregardingMACisnotabundantduetothefactthatthis eldistech-nologicallyandproductionoriented,andstronglyin u-encedbythemarketcompetition.Jabardaetal.[1]developedasteady-statecomputermodelofMACsystemwithVDCtosimulateandvalidatebyexperiments.TianandLi[2]alsodevelopedasimulationmodelandvalidated.TheirstudiesrevealedthatthereisaperformancebandforthesystemparameterrelationshipduetothefrictionalforcesbetweenthemovingcomponentsoftheEVDCwithinwhichallthesteady-statepointsfall.Nowadays,thecontrolstrategiesofSISO(singleinput,singleoutput)andMIMO(multipleinput,multipleoutput)havebeenproposedtoreachthetargetoftemperature,humidityandvolumecontrol[3,4].PIDauto-tuningwasappliedintoHVACsystemtocontroltheoutputsignalaccordingtothetransientcharacteristicofcontrolobjective,whichwasmoreadaptiveforactualairconditioningsystem[5–7].
1359-4311/$-seefrontmatterÓ2006ElsevierLtd.Allrightsreserved.doi:10.1016/j.applthermaleng.2006.08.017
压缩机
928Z.-g.Qietal./AppliedThermalEngineering27(2007)927–933
NomenclatureTe,surf
evaporatorsurfacetemperaturemeasuredbyresistancetemperaturedetector(RTD)
Te,surf,lowerlowerlimitvalueofevaporatorsurfacetem-perature
Te,surf,upperupperlimitvalueofevaporatorsurfacetem-perature
Tin-carcompartmenttemperaturemeasuredbyin-car
T-typethermocouple
Tsetsettemperature
Vdis
Vmin
displacementofcompressor
theminimaldisplacementofcompressor
Greeksymbolsae ectfactorofevaporatorsurfacetemperature
onthedisplacementofcompressor
be ectfactorofcompartmenttemperatureonthe
displacementofcompressor
Ingeneral,thecontrolvalveisusedtocontrolthedis-placementofEVDCinthetraditionalcontrolmethod,whosecontrolparametersalwaysweresuctionanddis-chargepressureofcompressor,orsuctionanddischargetemperature.Precisepressureandtemperaturetransducersimprovethesystemcost.AfterlotsofsimulationofVDC,YuanandChen[8]introducedanovelelectronicvalvewhoseactionisdeterminedbyspringforce,suctionpressureofcompressor,dischargepressureofcompressor,crankcasepressureandtheelectriccurrent.Theypresentedthatthecompressordisplacementcanbeadjustedaccordingtotheouterconditionsandpassengers’requirements.TianandLi[9]studiedtheMACsystemwithanEVDCnumerically.Theircalculationalresultsshowedthatthecompressordis-placementisdeterminedbynotonlythechangingvaluesbutalsothechangingdirectionofexternalparametersintheMACsystem.Theyalsofoundthattheircontrolmethodledtoatimelagwhentheambientconditionchan-ged.Benoualietal.[10]describedthemaindi erencesbetweeninternalandexternallycontrolcompressorsindetail,basedonanexperimentalstudyanalyzingtheirper-formancecharacteristics.Theydevelopedacontrolalgo-rithmforEVDCtakingintoaccountthefastvariationsoftheenginespeedoftypicalurbandrivingcyclesbasedontheperformancecharacteristics.Theirexperimentsresultsshowedthatthiscontrolmethodgainpossibleenergysavingcomparedwiththeinternalcontrolcompressor.
Asdescribedabove,mostopenliteratureswerefocusedonthesimulationandalgorithmdevelopmentoftheMACsystem.Inthepresentpaper,takingthesteadyin-cartem-peratureasthetarget,anewdisplacementcontrolmethodofEVDCisproposedandanexperimentalstudyoftheMACsystemwithanEVDCisperformedandanalyzed.2.ControlstrategyofEVDC
Inthispaper,theEVDCisanexternally-controlledvar-iabledisplacementcompressor,whichisdriventhroughabeltrollerconnectedwiththeengine.TheEVDCcanadjustthedisplacementthroughthecontrolvalvethatisdrivenbyanelectro-motor.AlotofexperimentalresultsshowthattherelationshipbetweenthedisplacementofEVDCandinputvoltageofEVDCisnonlinear.
InordertomaintainasteadyoperationofMACsystem,theevaporatorsurfacetemperaturemustbewithinaspe-ci crange(4–6°Cingeneral).Iftheevaporatorsurfacetemperatureislessthanthisrange,thedisplacementofcompressorshouldbedecreasedinordertoavoidtheevap-oratorfrosting.Iftheevaporatorsurfacetemperatureisgreaterthanthisrange,thecompressorshouldincreasedis-placementorbeinfulldisplacementoperationinordertosupplytheenoughsystemcoolingcapacity.
Ontheotherhand,thein-cartemperaturein uencestheMACsystemperformancegreatly.Thein-cartemperaturegreaterthanthepassenger’sdesiredtemperaturemeansmorecoolingcapacity.Whenthein-cartemperatureislessthanthepassenger’sdesiredtemperature,thesystemcool-ingcapacityshouldbedecreased.
Basedontheaboveanalysis,thedisplacementcontrolmethodisdeterminedbytheevaporatorsurfacetempera-tureandin-cartemperatureinsteadofsuctionanddis-chargepressureorsuctionanddischargetemperature,whicharethemainfactorsa ectthetransientdisplacementofEVDC.
Thedisplacementcontrolfunctionofvariabledisplace-mentcompressorbasedontheevaporatorsurfacetemper-atureandin-cartemperatureisasfollows:
Vdis¼aÂðTe;surfÀTe;surf;lowerÞ=ðTe;surf;upperÀTe;surf;lowerÞ
þVminþbÂðTin-carÀTsetÞð1ÞwhereTe,surfandTinÀcararemeasuredbyaresistancetemperaturedetector(RTD)andaT-typethermocouplelocatedinHVACandvehiclecompartments,respectively.Tsetisthein-cartemperaturepassengerdesiredtoachieve.aisthee ectfactorofevaporatorsurfacetemperatureonthedisplacementofcompressor.bisthee ectfactorofcompartmenttemperatureonthedisplacementofcompres-sor.Vministheminimaldisplacementofcompressorwhenthecompressorisoperatedinrealenvironment.Thevalueofaandbaredeterminedbylotsofcompressorbenchtests.
Aremarkablecharacterofthiscontrolstrategyistoachieveenergysaving.WecanreachthistargetthroughadjustingtheupperlimitvalueTe,surf,upperandlowerlimitvalueTe,surf,lower,whichissetaccordingtothecontrol
压缩机
Z.-g.Qietal./AppliedThermalEngineering27(2007)927–933929
requirements.ChangingTe,surf,upperandTe,surf,lowerinarel-ativehighrange,thecalculationaldisplacementwilldecreasecorrespondingly.Thepowerofcompressorthatisdrivenbyenginealsowilldecreaseandtheenginee -ciencywillincrease.
Asdescribedabove,itisdi culttorevealtherelation-shipbetweenthedisplacementandtheinputvoltageofdri-venmotorexactlyusingasimplecorrelation.Ingeneral,wecangetatableofthedisplacementversustheinputvoltageofdrivenmotorthroughexperiments.Forthesakeofthesimpli cationandthegeneralizationofthecontrolsystem,onlythelowerandupperlimitvaluesoftheinputvoltageareneeded.Theothermiddleinputvoltagesderivefromthelineardivisionofthelowerandupperlimitvalues.Experimentalresultsshowthatthelinearprocessisaccept-able.Fig.1showsthe owchartofdisplacementcalcula-tionofEVDC.Aftergainingthedisplacement,theinputvoltageofdrivenmotorcouldgetthroughlookupingtherelationshiptable.3.Experimentalsetup
Anauto-controlledautomotiveairconditioningsystemwithanEVDCisexperimentedinthewind-tunnel.Forthereasonofcomparison,anauto-controlledautomotiveairconditioningsystemwitha xeddisplacementcompres-sor(FDC)isalsotested.
Fig.2showstheschematicdiagramofthewind-tunnel.TheschematicdiagramofMACsystemisshowninFig.3.Thesystemconsistsofanexternally-controlledvariabledisplacementcompressor,aparallel owcondenser,alaminatedevaporator,H-typethermalexpansionvalve,controlpanel,aT-typethermocouple,aresistancetemper-aturedetector(RTD)andhoses.SomeSCM(SingleChipMicyoco)areassembledincontrolpanel.
Thetemperaturesignalsmeasuredbytheresistancetemperaturedetector(RTD)andT-typethermocouplearetransmittedintothecontrolpanel.Gainingthe
Fig.2.AschematicdiagramoftunneltestequipmentofMAC.
压缩机
930Z.-g.Qietal./AppliedThermalEngineering27(2007)927–933
Fig.3.AschematicdiagramofautomobileairconditioningsystemwithaEVDC.
Table1
Somemaincomponents’geometriesComponentsStyle
Geometry
EvaporatorLaminated268mm·225mm·90mmCondenserParallel ow670mm·463mm·16mmCompressorPXE16(EVDC)
Displacement:163(cm3)ExpansionThermostaticexpansionDenfoss2.5tonofvalve
valve
refrigeration
Table2
TheprecisionofthemeasureddevicesItems
Range
PrecisionVehiclespeed
0–200(kmhÀ1
)±0.1(kmhÀ1)AmbienttemperatureÀ30–60°C±1(°C)Relativehumidity15–95%
±5%
Sunlightpower0–1100(WmÀ2)±50(WmÀ2)Airvelocity
0–140(kmhÀ1)±0.5(kmhÀ1)Thermocouple(T-type)±0.1(°C)Pressuretransducer
0–18(bar)
±0.1(bar)
calculationaldisplacementbytheSCM,theinputvolt-ageofelectro-motordrivencontrolvalvecanbedeter-minedbytheoutputsignalofcontrolpanel.Eachinputvoltageofelectro-motorhasacorrespondingcompressordisplacement.
Somemaincomponents’geometriesareshowninTable1.Theexperimentsandambientconditionsareorga-nizedaccordingtotheShanghaiEnterpriseStandard[11].TheprecisionofthemeasuredinstrumentsisshowninTable2.RefrigerantusedintheexperimentsisR-134a.4.Resultsanddiscussion
4.1.PerformanceofEVDCsystem
Theevaporatorsurfacetemperaturechangesunderthedi erentambientconditionsareshowninFig.4.Thedesiredpassengercompartmenttemperatureis25°C.
Therangeofevaporatorsurfacetemperatureisalmostfrom5°Cto7°C,whichmeanstheevaporatorsurfacetemperaturechangesareasmallvalue.Forthedisplace-mentcontrolmethodofEVDC,theevaporatorsurfacetemperaturecanresultinasmallchangeofthedisplace-mentofcompressorregardlessofthesunload.
Thein-cartemperaturechangesunderthedi erentambientconditionsareshowninFig.5wherethepassen-gers’desiredtemperatureis25°C.Underdi erentambientconditions,thedeviationofin-cartemperatureisnomorethan2°C,especiallyat35°C,in-cartemperaturealmostretainat25°CduringthewholetestperiodbecausetheEVDCchangesthedisplacementquicklyandaccuratelywiththeambientconditionschanges.Forthedi erenttestperiodsandconditions,thecomparisonbetweenmeasuredin-caraveragetemperatureandthestandard[11]isshowninTable3.TheperformanceofMACsystemwithEVDChasagoodagreementwiththestandard[11].
Fig.6showsthatthedischargepressureofcompressorunderdi parisonbetweenEVDCandFDCsystem
Fig.7showsthatthecomparisonofin-cartemperaturebetweenEVDC(externally-controlledvariabledisplace-mentcompressor)systemandFDC( xeddisplacementcompressor)systemwhenambienttemperatureis35°C.Themeasurementstartedwhenthein-cartemperatureissteadyintwosystems.ForEVDCsystem,thein-cartem-peraturehardlychangesbeforetheambientconditionchanges.OtherwiseforFDCsystem,thereisanobvious uctuationbeforetheambientconditionchanging.Duringthewholetestperiod,thein-cartemperatureinEVDCsys-temcanconserveatasteadyvalueeventhoughthesunloadchangesabout24minlater.Otherwisein-cartemper-atureinFDCsystemhasagreatdecreaseatabout24minwhenambientconditionchanges,whichleadstoabadthermalcomfortandconsumesmoreenergy.
ThecomparisonofdischargepressureofcompressorisshowninFig.8whenambienttemperatureis35°C.Itpre-sentsthatduringthesteadytestperiodthedischargepres-sureofcompressorofEVDCsystemissteadierthanthatofFDCsystemeventhoughthecurveofdischargepressureofEVDCisawavestyle.ItisshowninFig.8thattheperfor-manceofrespondingtotheambientconditionschangesofvariabledisplacementcompressorisbetterthanthatof xeddisplacementcompressor.ThewavecrestofEVDCdischargepressureisabout15slaterwhenambientcondi-tionchangesandthemain uctuationlastsonlyabout30sandthenatarelativesteadywave.FortheFDCsystem,thewavecrestofFDCdischargepressureisabout1minlaterandthewhole uctuationlastsatleast1.2minandthenatarelativesteady
wave.
压缩机
Z.-g.Qietal./AppliedThermalEngineering27(2007)927–933931
Fig.4.Evaporatorsurfacetemperaturechangesunderthedi erentambient
conditions.
Fig.5.In-cartemperaturechangesunderthedi erentambientconditions.
Table3
Comparisonofin-cartemperatureateachmeasuredperiodundersummerconditionsTime(min)20406080110130160
Vehiclespeed(km/h)50805080
0(Idle)1100(Idle)
AircirclemodeRecycleRecycleFreshairFreshairRecycleFreshairFreshair
Standardin-caraveragetemperature(°C)624622626624633624640
Measuredin-caraveragetemperature(°C)23.6202523.632.623.839
压缩机
932Z.-g.Qietal./AppliedThermalEngineering27(2007)927–933
Fig.6.DischargepressureofEVDCunderthedi erentambient
conditions.
parisonofin-cartemperaturebetweenEVDCandFDCsystem.
Table4showsthatthemax uctuationtemperatureofEVDCunderthedi erentambientconditionsissmallerthanthatofFDC.Itmeansthattheperformanceofanauto-controllerMACsystemwithavariabledisplacementcompressorisbetterthanthatofMACsystemwitha xeddisplacementcompressor,becausetheformercansupplythepassengersmorecomfortablethermalenvironment.
5.Conclusions
Inthispaper,anewdisplacementcontrolmethodforthevariabledisplacementcompressorisdevelopedandthewind-tunnelexperimentsareperformed.Thecontrolmethodisproposedbasedontheevaporatorsurfacetem-peratureandin-cartemperaturechanges.The
experimental
压缩机
Z.-g.Qietal./AppliedThermalEngineering27(2007)927–933933
parisonofdischargepressurebetweenEVDCandFDCsystem.
Table4
Thecomparisonofmax uctuationofin-cartemperatureAmbienttemperature(°C)
Max uctuationtemperatureofEVDC(°C)Max uctuationtemperatureofFDC(°C)
221.01.3
310.81.3
350.51.5
[3][2]
resultsshowthatthedeviationofthein-cartemperaturefromthepassengers’desiredtemperatureisnomorethan2°Candtheperformanceisbetterespeciallyunderthehighambienttemperature.TheperformanceofaMACsystemwithavariabledisplacementcompressorisbetterthanthatofaMACsystemwitha xeddisplacementcom-pressor.Thecompressorresponsetothein-cartemperatureandambienttemperaturechangesofEVDCisquickerthanthatofFDC.ItisshownthattheEVDCsystemcansupplythepassengerswithamorecomfortableandsteadycom-partmentenvironmentthroughthecomparisonbetweenEVDCandFDCsystem.Acknowledgements
Theauthorswouldliketoacknowledgethe nancialsupportprovidedbyShanghaiMunicipalScienceandTechnologyCommission(GrantNo.03dz11013),andinparticular,Mr.LIYu-qin,Mr.ZHOUJiang-fengfortheirenormoushelpinexperimentsorganization.References
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[1]J.M.S.Jabarda,W.G.Mamani,M.R.Ianella,Modelingandexper-imentalevaluationofanautomotiveairconditioningsystemwitha
variablecapacitycompressor,InternationalJournalofRefrigeration25(2002)1157–1172.
ChangqingTian,XiantingLi,Numericalsimulationonperformancebandofautomotiveairconditioningsystemwithavariabledisplace-mentcompressor,EnergyConversionandManagement46(2005)2718–2738.
X.D.He,S.Liu,H.Asada,Multivariablefeedbackdesignforregulatingvaporcompressioncycles,in:ProceedingsoftheAmericanControlConference,1995,4331–4335.
Xiang-DongHe,ShengLiu,H.AsadaHaruhiko,ModelingofvaporcompressioncyclesformultivariablefeedbackcontrolofHVACsystems,JournalofDynamicSystems,Measurement,andControl119(1997)183–191.
Zhi-yunBai,Zhi-jiuChen,Electronicexpansionvalveanditsapplicationinevaporationsuperheattemperaturecontrol,HV&AC4(1996)21–24(inChinese).
T.Katayama,T.Itoh,M.Ogawa,etal.,Optimaltrackingcontrolofaheatexchangerwithchangeinloadcondition,in:Proceedingsofthe29thIEEEConferenceonDecisionandControl,vol.3,December,1990,13(12)1584–1589.
BiQiang,CaiWen-Jian,WangQing-Guo,etal.,Advancedcontrol-lerauto-tuninganditsapplicationinHVACsystems,ControlEngineeringPractice8(2000)633–644.
Xiao-meiYuan,Zhi-jiuChen,Displacementcontrolandkineticanalysisofanovelvariabledisplacementcompressorforautomotiveairconditioner,ChineseJournalofMechanicalEngineering(EnglishEdition)14(4)(2001)325–329.
ChangqingTian,XiantingLi,Transientbehaviorevaluationofanautomotiveairconditioningsystemwithavariabledisplacementcompressor,AppliedThermalEngineering25(2005)1922–1948.J.Benouali,D.Clodic,C.Malvicino,Externalandinternalcontrolcompressorsformobileair-conditioningsystems,in:ProceedingofSixteenthInternationalCompressorEngineeringConferenceatPurdue,C26-2,2002.
Q/RC1095-2006,Auto-controlledautomotiveairconditioningsys-tem,ShanghaiEnterpriseStandard,Shanghai:ShanghaiAssociationofStandardization,
2006.
正在阅读:
Experimental study of an auto-controlled automobile air conditioning system with an externally-contr05-12
日常问候语12-31
第七章 论婚姻子息(邵发福) - 图文12-05
英语口译笔记法实战指导09-02
电路复习题(专1)10-29
JL42 会 议 纪 要 - 图文10-29
太公奇门01-26
景德镇XXX有限公司党建工作总结报告)09-02
浙江省律师执业行政许可操作规程06-16
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- conditioning
- Experimental
- controlled
- automobile
- externally
- system
- study
- contr
- auto
- with
- air
- 工业炉窑大气污染物排放标准
- 第二第七节碳、硅及其化合物性质及应用
- 八年级物理第五章透镜及其应用测试题B
- 汉钟螺杆制冷压缩机说明书
- 2014年4月份考试大学英语(2)第三次作业
- 质子守恒式,质子平衡式
- 准确把握角色定位 切实履行工作职责
- 2013年世界大学排行榜
- 太极拳的文化内涵
- 物理高考解答计算题时要注意的问题
- 看《生死抉择》观后感
- 【最全最详细】学习“三严三实,八破八立”自我剖析(政治)
- 我国中小企业债务融资的风险及其防范
- 新冀教版九年级英语(全一册)Lesson 19 教学设计教案
- 高职教育项目教学法的实践与研究
- 两种炉膛火焰检测系统的比较
- 国标华尔兹金、银、铜牌线路名称
- 电气职业生涯规划书
- 2015年滨海常农商村镇银行社会招聘
- 安徽无负压供水设备解决方案