大学物理答案下册

更新时间:2023-03-15 21:24:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

习题八

8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示

(1) 以A处点电荷为研究对象,由力平衡知:q?为负电荷

1q212cos30??4π?0a24π?0q???3q3

qq?(32a)3

解得

(2)与三角形边长无关.

题8-1图 题

8-2图

8-2 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2?,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.

解: 如题8-2图示

Tcos??mg??q2?Tsin??F?1e?4π?0(2lsin?)2?

解得

q?2lsin?4??0mgtan?

E?q4??0r2,当被考察的场点距源点电荷很近(r→0)时,则场强

8-3 根据点电荷场强公式

→∞,这是没有物理意义的,对此应如何理解?

仅对点电荷成立,当r?0时,带电体不能再视为点电荷,再用上式求

场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.

解:

?E?q4π?0r2?r08-4 在真空中有A,B两平行板,相对距离为d,板面积为S,其带电量分别为+q和-q.则

q224??dff0这两板之间有相互作用力,有人说=,又有人说,因为f=qE,

q2?S以f=0.试问这两种说法对吗?为什么? f到底应等于多少?

E?q?0S,所

解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把

q?0S看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个合场强

qq2qf?q?E?2?0S2?0S,这是两板间相互作用2?0S,另一板受它的作用力板的电场为

E?的电场力.

????p?ql8-5 一电偶极子的电矩为,场点到偶极子中心O点的距离为r,矢量r与l的夹角为

E?,(见题8-5图),且r??l.试证P点的场强E在r方向上的分量Er和垂直于r的分量?分别为

pcos?psin?Er=2??0r3, E?=4??0r3

???ppsin?rr证: 如题8-5所示,将分解为与平行的分量和垂直于的分量psin?.

∵ r??l ∴ 场点P在r方向场强分量

pcos?Er?2π?0r3

垂直于r方向,即?方向场强分量

E0?psin?4π?0r3

题8-5图 题8-6图

8-6 长l=15.0cm的直导线AB上均匀地分布着线密度?=5.0x10-9C·m的正电荷.试求:

-1

(1)在导线的延长线上与导线B端相距a1=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距d2=5.0cm 处Q点的场强. 解: 如题8-6图所示

(1)在带电直线上取线元dx,其上电量dq在P点产生场强为

1?dx4π?0(a?x)2

l?2dxEP??dEP?l4π?0??2(a?x)2dEP???11[?]ll4π?0a?a??l2

2

π?0(4a2?l2)

?9?1用l?15cm,??5.0?10C?m, a?12.5cm代入得

?EP?6.74?102N?C?1 方向水平向右

1?dxdEQ?224π?x?d02 方向如题8-6图所示 (2)同理

?dE?0EQx由于对称性?l,即Q只有y分量,

dEQy∵

1?dx?4π?0x2?d22d2x2?d22

l2l?2EQy??dEQy?ld2?4π?2

?dx(x?d)

22232??l2π?0l2?4d22?9?1以??5.0?10C?cm, l?15cm,d2?5cm代入得

EQ?EQy?14.96?102N?C?1解: 如8-7图在圆上取dl?Rd?

,方向沿y轴正向

8-7 一个半径为R的均匀带电半圆环,电荷线密度为?,求环心处O点的场强.

题8-7图

dq??dl?R?d?,它在O点产生场强大小为

?Rd?4π?0R2方向沿半径向外

?dEx?dEsin??sin?d?4π?0R则

dE?dEy?dEcos(???)?Ex???积分

0??sin?d??4π?0R2π?0R

Ey???0

??cos?d?4π?0R

E?Ex?∴

?2π?0R,方向沿x轴正向.

??cos?d??04π?0R

8-8 均匀带电的细线弯成正方形,边长为l,总电量为q.(1)求这正方形轴线上离中心为r

处的场强E;(2)证明:在r??l处,它相当于点电荷q产生的场强E.

q?解: 如8-8图示,正方形一条边上电荷4在P点产生物强dEP方向如图,大小为

??cos?1?cos?2?dEP?l224π?0r?4 l2cos?1?l22r?2 ∵

cos?2??cos?1 ?ldEP?l2l2224π?0r?r?42 ∴

?dEP在垂直于平面上的分量dE??dEPcos?

dE??∴

?l4π?0l2r?42rl2r?22l2r?4

2

题8-8图

由于对称性,P点场强沿OP方向,大小为

l2l224π?0(r?)r?42 q??4l ∵

qrEP?2l222l4π?0(r?)r?42 方向沿OP ∴

8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一

2EP?4?dE??4?lr个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该平面轴线上的A点处,求:通过圆平面的电通量.( 解: (1)由高斯定理

??arctanRx)

??q?E?dS?s?0

立方体六个面,当q在立方体中心时,每个面上电通量相等

?e?∴ 各面电通量

q6?0.

?e?q6?0

(2)电荷在顶点时,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心,则边长2a的正方形上电通量

对于边长a的正方形,如果它不包含q所在的顶点,则如果它包含q所在顶点则

?e?q24?0,

?e?0.

如题8-9(a)图所示.题8-9(3)图

题8-9(a)图 题8-9(b)图 题8-9(c)图

22R?xR(3)∵通过半径为的圆平面的电通量等于通过半径为的球冠面的电通量,球冠

面积*

S?2π(R2?x2)[1?xR?x22]

??q0S∴

*关于球冠面积的计算:见题8-9(c)图

?0?04π(R2?x2)?q1?2?0[

xR2?x2]

S??2πrsin??rd?

?5?2πr2?sin??d?0??2πr(1?cos?)

8-10 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×108cm ,12cm 各点的场强.

C·m求距球心5cm,

-3

2解: 高斯定理

???q2E?dS?E4πr??s?q?0

当r?5cm时,

?0,

??q?0E?0,

4π?p3?r3)(r内 r?8cm时,?q34π32?r?r内3E?24π?r?3.48?104N?C?1, 方向沿半径向外. 0∴

??

UA?EACdAC?(2)

?1dAC?2.3?103?0V

8-23 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计

算:

(1)外球壳上的电荷分布及电势大小;

(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.

解: (1)内球带电?q;球壳内表面带电则为?q,外表面带电为?q,且均匀分布,其电势

题8-23图

????U??E?dr??R2R2(2)外壳接地时,外表面电荷?q入地,外表面不带电,内表面电荷仍为?q.所以球壳电势由内球?q与内表面?q产生:

qdrq?4π?0r24π?0R

?04π?0R24π?0R2

(3)设此时内球壳带电量为q?;则外壳内表面带电量为?q?,外壳外表面带电量为

U?q?q?q?q?(电荷守恒),此时内球壳电势为零,且

UA?q'4π?0R1?q'4π?0R2??q?q'?04π?0R2

q??得 外球壳上电势

R1qR2

UB?q'4π?0R2?q'4π?0R2??q?q'?R1?R2?q?24π?0R24π?0R2

8-24 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为一点电荷+q,试求:金属球上的感应电荷的电量.

解: 如题8-24图所示,设金属球感应电荷为q?,则球接地时电势

d?3R处有

UO?0

8-24图

由电势叠加原理有:

q'q??0UO?4π?0R4π?03R

q3得 q???

8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0.试求:

(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.

Fq2F0?24π?r0解: 由题意知

(1)小球3接触小球1后,小球3和小球1均带电

qq??2,

小球3再与小球2接触后,小球2与小球3均带电

3q???q4

∴ 此时小球1与小球2间相互作用力

32qq'q\38F1???F04π?0r24π?0r28

2q(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为3.

22qq4F2?332?F04π?0r9 ∴ 小球1、2间的作用力

*8-26 如题8-26图所示,一平行板电容器两极板面积都是S,相距为d,分别维持电势

UA=U,UB=0不变.现把一块带有电量q的导体薄片平行地放在两极板正中间,片的面

积也是S,片的厚度略去不计.求导体薄片的电势.

?2,解: 依次设A,C,B从上到下的6个表面的面电荷密度分别为?1,?3,?4,?5,?6如图所示.由静电平衡条件,电荷守恒定律及维持UAB?U可得以下6个方程

题8-26图

?0UqA1??????CU?20?1SSd??????q4?3S??????qB???0U6?5Sd?????03?2??4??5?0???1??2??3??4??5??6

q?1??6?2S 解得

?Uq?2???3?0?d2S ?Uq?4???5?0?d2S

?UqE2?4???0d2?0S 所以CB间电场

UC?UCB?E2d1qd?(U?)222?0S

UUUC?2,若C片不带电,显然2 注意:因为C片带电,所以

8-27 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球壳,介质相对介电常

UC?数为?r,金属球带电Q.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理

S???D?dS??q

(1)介质内(R1?r?R2)场强

???Qr?QrD?,E内?34πr4π?0?rr3;

介质外(r?R2)场强

??Qr?QrD?,E外?4πr34π?0r3 U??? (2)介质外(r?R2)电势

r??E外?dr?Q4π?0r

U??

?r?????E内?dr??E外?drr介质内(R1?r?R2)电势

?11Q(?)?4π?0?rrR24π?0R2 Q1??1?(?r)4π?0?rrR2

R2q (3)金属球的电势

U??R1R2?????E内?dr??E外?drR2

??QdrR4π??r2R24π?r20r0 Q1??1?(?r)4π?0?rR1R2

???Qdr8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为?r的电介质.试

求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 分别为?2与?1

??D?dS??q0由?得

??解: 如题8-28图所示,充满电介质部分场强为E2,真空部分场强为E1,自由电荷面密度

D1??1,D2??2

D1??0E1,D2??0?rE2

E1?E2?Ud

?2D2???rD1∴ ?1

题8-28图 题8-29图

8-29 两个同轴的圆柱面,长度均为l,半径分别为R1和R2(R2>R1),且l>>R2-R1,两柱面之间充有介电常数?的均匀电介质.当两圆柱面分别带等量异号电荷Q和-Q时,求: (1)在半径r处(R1<r<R2=,厚度为dr,长为l的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r的同轴圆柱面(S) 则 当(R1?r?R2)时,

(S)??D??dS?2πrlD

?q?Q

Q2πrl ∴

D2Q2w??2222?8π?rl (1)电场能量密度

D?Q2Q2drdW?wd??2222πrdrl?8π?rl4π?rl 薄壳中

(2)电介质中总电场能量

RQ2drQ2W??dW???ln2VR14π?rl4π?lR1

Q2W?2C (3)电容:∵

R2Q22π?lC??2Wln(R2/R1)

*8-30 金属球壳A和B的中心相距为r,A和B原来都不带电.现在A的中心放一点电荷q1,在B的中心放一点电荷q2,如题8-30图所示.试求:

(1) q1对q2作用的库仑力,q2有无加速度;

(2)去掉金属壳B,求q1作用在q2上的库仑力,此时q2有无加速度. 解: (1)q1作用在q2的库仑力仍满足库仑定律,即

F?1q1q24π?0r2

F?1q1q24π?0r2,

但此时q2受合力不为零,

但q2处于金属球壳中心,它受合力为零,没有加速度.

q1作用在q2上的库仑力仍是(2)去掉金属壳B,

有加速度.

题8-30图 题8-31图

8-31 如题8-31图所示,C1=0.25?F,C2=0.15?F,C3=0.20?F .C1上电压为50V.求:

UAB.

解: 电容C1上电量

Q1?C1U1

电容C2与其上电荷

C3并联C23?C2?C3

Q23?Q1

U2?∴

Q23C1U125?50??C23C2335

解:(1)缝宽变窄,由asin??k?知,衍射角?变大,条纹变稀;

(2)?变大,保持a,k不变,则衍射角?亦变大,条纹变稀; (3)由正入射变为斜入射时,因正入射时asin??k?;斜入射时,a(sin??sin?)?k??,保持a,?不变,则应有k??k或k??k.即原来的k级条纹现为k?级.

13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样 说明?

答:不矛盾.单缝衍射暗纹条件为asin??k??2k题).相邻两半波带上对应点向?方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为dsin??k?,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.

13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?

答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数N2成正比,所以明纹很亮;又因为在相邻明纹间有(N?1)个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.

13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.

解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即

?,是用半波带法分析(子波叠加问2?(a?b)sin???k???asin???k??(k?0,1,2,?)

(k??1,2?)a?bk?时明纹缺级. a(1)a?b?2a时,k?2,4,6,???偶数级缺级; (2)a?b?3a时,k?3,6,9,???级次缺级; (3)a?b?4a,k?4,8,12,???级次缺级.

可知,当k?13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关? 解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由(a?b)sin??k?,对同一k值,衍射角???. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000A的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为

οasin??(2k?1)o? 2当??6000A时,k?2 ???x时,k?3 重合时?角相同,所以有

asin??(2?2?1)?6000?(2?3?1)x 22o5得 ?x??6000?4286A

713-12 单缝宽0.10mm,透镜焦距为50cm,用??5000A的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水

o中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为?x?2半角宽度为??sin?1?naf

?na

(1)空气中,n?1,所以

(2)浸入水中,n?1.33,所以有

5000?10?10?3?x?2?0.5??5.0?10m ?30.10?10?10?15000?10?3 rad ??sin?5.0?10?30.10?10

5000?10?10?3 m ?x?2?0.50??3.76?10?31.33?0.10?105000?10?10?1?3 rad ??sin?3.76?10?31.33?0.1?1013-13 用橙黄色的平行光垂直照射一宽为a=0.60mm的单缝,缝后凸透镜的焦距f=40.0cm,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm处的P点为一明条纹;求:(1)入射光的波长;(2)P点处条纹的级数;(3)从P点看,对该光波而言,狭缝处的波面可分成几个半波带?

解:(1)由于P点是明纹,故有asin??(2k?1)?2,k?1,2,3???

x1.4??3.5?10?3?tan??sin? f4002asin?2?0.6故????3.5?10?3

2k?12k?11??4.2?10?3mm 2k?1由

当 k?3,得?3?6000A

ook?4,得?4?4700A

(2)若?3?6000A,则P点是第3级明纹; 若?4?4700A,则P点是第4级明纹. (3)由asin??(2k?1)oo?2可知,

当k?3时,单缝处的波面可分成2k?1?7个半波带; 当k?4时,单缝处的波面可分成2k?1?9个半波带.

13-14 用??5900A的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?

o1?3?4解:a?b?mm?2.0?10 mm?2.0?10A

500o由(a?b)sin??k?知,最多见到的条纹级数kmax对应的???2,

所以有kmax?a?b?2.0?104??3.39,即实际见到的最高级次为kmax?3.

5900o13-15 波长为5000A的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm. 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成

30°斜入射时,中央明条纹的位移为多少? 解:a?b?1?5.0?10?3 mm5.0?10?6m 200(1)由光栅衍射明纹公式

(a?b)sin??k?,因k?1,又sin??tan??所以有(a?b)x fx1?? f5000?10?10?60?10?2?即 x1? ?6a?b5.0?10?2?6.0?10m?6 cm

(2)对应中央明纹,有k?0

正入射时,(a?b)sin??0,所以sin????0

斜入射时,(a?b)(sin??sin?)?0,即sin??sin??0

x1因??30?,∴sin??tan????

f211故x?f??60?10?2?30?10?2m?30 cm

22?f这就是中央明条纹的位移值.

13-16 波长??6000A的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在

与sin??0.30处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°sin??0.20>?>-90°范围内,实际呈现的全部级数. 解:(1)由(a?b)sin??k?式

对应于sin?1?0.20与sin?2?0.30处满足:

o0.20(a?b)?2?6000?10?10

得 0.30(a?b)?3?6000?10(2)因第四级缺级,故此须同时满足a?b?6.0?10?6

(a?b)sin??k?

?10 m

asin??k?? a?b解得 a?k??1.5?10?6k?

4取k??1,得光栅狭缝的最小宽度为1.5?10?6m (3)由(a?b)sin??k?

(a?b)sin? k??当??

?2,对应k?kmax

6.0?10?6∴ kmax???10 ?10?6000?10??因?4,?8缺级,所以在?90???90范围内实际呈现的全部级数为

a?bk?0,?1,?2,?3,?5,?6,?7,?9共15条明条纹(在k??90?k??10处看不到).

o13-17 一双缝,两缝间距为0.1mm,每缝宽为0.02mm,用波长为4800A的平行单色光垂直入射双缝,双缝后放一焦距为50cm的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹? 解:(1)中央明纹宽度为

4800?10?7?50?10l0?2f?2?mm ?2.4cm

a0.02?(2)由缺级条件

asin??k??(a?b)sin??k?

k?k?即k?5,10,15,???缺级.

a?b0.1?k??5k? k??1,2,??? a0.02中央明纹的边缘对应k??1,所以单缝衍射的中央明纹包迹内有共9条双缝衍射明条

纹.k?0,?1,?2,?3,?4

13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm,透镜焦距为50cm,所用单色光波长为5000A,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度

5000?10?7?4??1.22?1.22??30.5?10D0.2o?

∴ 爱里斑半径

od?ftan??f??500?30.5?10?4?1.5mm 2-6

13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10rad,它们都发出波长为5500A的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式 ???1.22D

?5.5?10?5?13.86cm ∴ D?1.22?1.22??6?4.84?1013-20 已知入射的X射线束含有从0.95~1.30A范围内的各种波长,晶体的晶格常数为2.75A,当X射线以45°角入射到晶体时,问对哪些波长的X射线能产生强反射?

解:由布喇格公式 2dsin??k? 得??oo2dsin?时满足干涉相长 k?当k?1时, ??2?2.75?sin45?3.89A

ok?2时, A

oo3.89k?3时,???1.30A

32?2.75?sin45?3.89?1.91 k?4时, ???0.97??24故只有?3?1.30A和A

oo?4?0.97A的X射线能产生强反射.

习题十四

o14-1 自然光是否一定不是单色光?线偏振光是否一定是单色光?

答:自然光不能说一定不是单色光.因为它只强调存在大量的、各个方向的光矢量,并未要求各方向光矢量的频率不一样.线偏振光也不一定是单色光.因为它只要求光的振动方向同一,并未要求各光矢的频率相同.

14-2 用哪些方法可以获得线偏振光?怎样用实验来检验线偏振光、部分偏振光和自然光? 答:略.

14-3 一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光,试说明这束光是怎样入射的?其偏振状态如何?

答:这束光是以布儒斯特角入射的.其偏振态为平行入射面的线偏振光.

14-4 什么是光轴、主截面和主平面?什么是寻常光线和非常光线?它们的振动方向和各自的主平面有何关系? 答:略.

14-5 在单轴晶体中,e光是否总是以c/ne的速率传播?哪个方向以c/n0的速率传播? 答:e光沿不同方向传播速率不等,并不是以c/n0的速率传播.沿光轴方向以c/n0的速率传播.

14-6是否只有自然光入射晶体时才能产生O光和e光?

答:否.线偏振光不沿光轴入射晶体时,也能产生O光和e光.

14-7投射到起偏器的自然光强度为I0,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过130°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是I0的几倍? 解:由马吕斯定律有

I2?

I0I13cos245ο?I0I1?0cos230o?I0 2428

I3?311,,倍. 848I01cos260ο?I028所以透过检偏器后光的强度分别是I0的

14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为I1,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I与I1之比为多少?

解:由马吕斯定律

I0Icos260ο?0 28I9II?0cos230οcos230ο?0

232I1?

10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以

dI的变化率增大,求: dt(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则

b?ad?a?ln] ?b2πrd2πr2πbdd??0ld?ab?adI(2) ????[ln?ln]

dt2πdbdt10-6 如题10-6图所示,用一根硬导线弯成半径为r的一个半圆.令这半圆形导线在磁场中以频率f绕图中半圆的直径旋转.整个电路的电阻为R.求:感应电流的最大值.

(1) ?m?b?a?0Ildr??d?a?0Ildr??0Il[ln题10-6图

??πr2解: ?m?B?S?Bcos(?t??0)

2d?mBπr2??i???sin(?t??0)dt2∴

22Bπr?Bπr?m??2πf?π2r2Bf22?mπ2r2Bf?∴ I? RR10-7 如题10-7图所示,长直导线通以电流I=5A,在其右方放一长方形线圈,两者共面.线

-1

圈长b=0.06m,宽a=0.04m,线圈以速度v=0.03m·s垂直于直线平移远离.求:d=0.05m

时线圈中感应电动势的大小和方向.

题10-7图

?解: AB、CD运动速度v方向与磁力线平行,不产生感应电动势. DA产生电动势

?I????1??(v?B)?dl?vBb?vb0

D2?dABC产生电动势

?2??∴回路中总感应电动势

CB???(v?B)?dl??vb?0I2π(a?d)

???1??2?

?0Ibv11(?)?1.6?10?8 V 2πdd?a方向沿顺时针.

10-8 长度为l的金属杆ab以速率v在导电轨道abcd上平行移动.已知导轨处于均匀磁场B中,设B的方向与回路的法线成60°角(如题10-8图所示),B的大小为B=kt(k为正常).t=0时杆位于cd处,求:任一时刻t导线回路中感应电动势的大小和方向.

?????11解: ?m??B?dS?Blvtcos60??kt2lv?klvt2

22d?m??klvt ∴ ???dt即沿abcd方向顺时针方向.

题10-8图

?10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t=0).

d?解: 如图逆时针为矩形导线框正向,则进入时?0,??0;

dt

题10-9图(a)在磁场中时出场时

题10-9图(b)

d??0,??0; dtd??0,??0,故I?t曲线如题10-9图(b)所示. dt题10-10图

10-10 导线ab长为l,绕过O点的垂直轴以匀角速?转动,aO=轴,如图10-10所示.试求: (1)ab两端的电势差; (2)a,b两端哪一点电势高? 解: (1)在Ob上取r?r?dr一小段

l磁感应强度B平行于转32B?2l ?9l1B?l2 同理 ?Oa??3?rBdr?018121∴ ?ab??aO??Ob?(??)B?l2?B?l2

1896则 ?Ob?2l30?rBdr?

(2)∵ ?ab?0 即Ua?Ub?0 ∴b点电势高.

题10-11图

10-11 如题10-11图所示,长度为2b的金属杆位于两无限长直导线所在平面的正中间,并

?以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I,两导线相距2a.试求:金属杆两端的电势差及其方向. 解:在金属杆上取dr距左边直导线为r,则

a?b?Iv1??0Iva?b1???)dr?ln ?AB??(v?B)?dl???0(?

Aa?b2?r2a?r?a?b∵ ?AB?0

∴实际上感应电动势方向从B?A,即从图中从右向左,

?Iva?b∴ UAB?0ln

?a?bB题10-12图

?10-12 磁感应强度为B的均匀磁场充满一半径为R的圆柱形空间,一金属杆放在题10-12图中

dB位置,杆长为2R,其中一半位于磁场内、另一半在磁场外.当>0时,求:杆两端的感应

dt电动势的大小和方向.

解: ∵ ?ac??ab??bc

d?1d323RdB ??[?RB]?dtdt44dtd?2dπR2πR2dB?ab????[?B]?

dt1212dtdt3R2πR2dB∴ ?ac?[ ?]412dtdB∵ ?0

dt∴ ?ac?0即?从a?c

dB10-13 半径为R的直螺线管中,有>0的磁场,一任意闭合导线abca,一部分在螺线管

dt内绷直成ab弦,a,b两点与螺线管绝缘,如题10-13图所示.设ab =R,试求:闭合

?ab??导线中的感应电动势.

解:如图,闭合导线abca内磁通量

??πR23R2?m?B?S?B(?)

64πR232dB∴ ?i??( ?R)64dt

dB?0 dt∴?i?0,即感应电动势沿acba,逆时针方向.

题10-13图题10-14图

10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab于直径位置,另一导体cd在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示方向.试求:

(1)ab两端的电势差;

(2)cd两点电势高低的情况.

????dB??dS知,此时E旋以O为中心沿逆时针方向. 解: 由?E旋?dl???ldt?(1)∵ab是直径,在ab上处处E旋与ab垂直

?∴ ?旋?dl?0

l∴?ab?0,有Ua?Ub

(2)同理, ?dc??cd??E?dl?0

旋∴ Ud?Uc?0即Uc?Ud

题10-15图

10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.

解: 设长直电流为I,其磁场通过正方形线圈的互感磁通为

?12??2a3a3?0Ia2πrdr??0Ia2πln2

∴ M?ln2

I2π10-16 一矩形线圈长为a=20cm,宽为b=10cm,由100匝表面绝缘的导线绕成,放在一无限

长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.

解:(a)见题10-16图(a),设长直电流为I,它产生的磁场通过矩形线圈的磁通为

?12??0a???0Ia2bdr?0Ia?12??B?dS??ln2

(S)2π?br2π?aN?12?N0ln2?2.8?10?6 H ∴ M?I2π(b)∵长直电流磁场通过矩形线圈的磁通?12?0,见题10-16图(b) ∴ M?0

题10-16图题10-17图

10-17 两根平行长直导线,横截面的半径都是a,中心相距为d,两导线属于同一回路.设两

导线内部的磁通可忽略不计,证明:这样一对导线长度为l的一段自感为

L?d?a?0ld?aIn. ?a?0Il2π解: 如图10-17图所示,取dS?ldr 则 ??2rπ2π(d?r)?Ild?a ?0lnπaa?(?0I??0I)ldr??d?aa?Il11d?ad(?)dr?0(ln?ln) rr?d2πad?a∴ L??I??0lπlnd?a a10-18 两线圈顺串联后总自感为1.0H,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H.试求:它们之间的互感. 解: ∵顺串时 L?L1?L2?2M

反串联时L??L1?L2?2M

∴ L?L??4M

M?L?L??0.15H 410-19图

10-19 一矩形截面的螺绕环如题10-19图所示,共有N匝.试求: (1)此螺线环的自感系数;

(2)若导线内通有电流I,环内磁能为多少? 解:如题10-19图示 (1)通过横截面的磁通为 ??磁链 ??N???b?0NI2rπahdr??0NIh2πlnb a?0N2Ih2πlnb a∴ L??I2π1(2)∵ Wm?LI2

2

??0N2hlnb a

∴ Wm??0N2I2h4πlnb a10-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I.求:导线内部单位长度上所储存的磁能. 解:在r?R时 B??0Ir2πR2

?0I2r2B2?∴ wm? 242?08πR取 dV?2πrdr(∵导线长l?1)

23RR?Irdr?0I20则 W??wm2?rdr?? ?004πR416π

习题十一

11-1 圆柱形电容器内、外导体截面半径分别为R1和R2(R1<R2),中间充满介电常数为?dU的电介质.当两极板间的电压随时间的变化?k时(k为常数),求介质内距圆柱轴线为

dtr处的位移电流密度.

2??l解:圆柱形电容器电容 C?

R2lnR12??lUq?CU?

R2lnR1q2??lU?U D???S2?rlnR2rlnR2R1R1?D?k?∴ j?

R2?trlnR1dU11-2 试证:平行板电容器的位移电流可写成Id?C.式中C为电容器的电容,U是

dt电容器两极板的电势差.如果不是平板电容器,以上关系还适用吗? 解:∵ q?CU

CU S∴ ?D?DS?CU d?DdUID??CdtdtD??0?

不是平板电容器时 D??0仍成立 ∴ ID?C

dU还适用. dt题11-3图

?11-3 如题11-3图所示,电荷+q以速度v向O点运动,+q到O点的距离为x,在O点处

?作半径为a的圆平面,圆平面与v垂直.求:通过此圆的位移电流. 解:如题11-3图所示,当q离平面x时,通过圆平面的电位移通量

?D?[此结果见习题8-9(3)]

q(1?2xx?a22)

d?D∴ ID??dtqa2v2(x2?a)322

题11-4图

-1

11-4 如题11-4图所示,设平行板电容器内各点的交变电场强度E=720sin105?tV·m,正方向规定如图.试求:

(1)电容器中的位移电流密度;

(2)电容器内距中心联线r=10m的一点P,当t=0和t=(不考虑传导电流产生的磁场). 解:(1) jD?∴ jD??0-2

1?10?5s时磁场强度的大小及方向2?D,D??0E ?t?E???0(720sin105?t)?720?105??0cos105?t A?m?2 ?t?t???? (2)∵ ?H?dl??I0??jD?dS

l(S)取与极板平行且以中心连线为圆心,半径r的圆周l?2?r,则

H2?r??r2jD

rH?jD

2t?0时HP?t?r?720?105??0?3.6?105??0A?m?1 21?10?5s时,HP?0 211-5 半径为R=0.10m的两块圆板构成平行板电容器,放在真空中.今对电容器匀速充电,

dE13-1-1

使两极板间电场的变化率为=1.0×10 V·m·s.求两极板间的位移电流,并计算电

dt容器内离两圆板中心联线r(r<R)处的磁感应强度Br以及r=R处的磁感应强度BR.

?D?E解: (1) jD? ??0?t?tID?jDS?jD?R2?2.8A

????(2)∵ ?H?dl??I0??jD?dS

lS取平行于极板,以两板中心联线为圆心的圆周l?2?r,则

H2?r?jD?r2??0∴ H?dE2?r dtrdE ?02dt??rdE Br??0H?002dt当r?R时,BR??0?0RdE2dt?5.6?10?6 T

-2

-3

-1

*11-6 一导线,截面半径为10m,单位长度的电阻为3×10Ω·m,载有电流25.1 A.试计算在距导线表面很近一点的以下各量: (1)H的大小;

(2)E在平行于导线方向上的分量; (3)垂直于导线表面的S分量.

解: (1)∵ Hdl?????I

取与导线同轴的垂直于导线的圆周l?2?r,则

(2)由欧姆定律微分形式 j??E得

H2?r?I IH??4?102A?m?1

2?rI/S?IR?7.53?10?2 V?m?1

?1/RS?????(3)∵S?E?H,E沿导线轴线,H垂直于轴线 ?∴S垂直导线侧面进入导线,大小S?EH?30.1W?m?2

*11-7 有一圆柱形导体,截面半径为a,电阻率为?,载有电流I0.

?(1)求在导体内距轴线为r处某点的E的大小和方向;

?(2)该点H的大小和方向;

?(3)该点坡印廷矢量S的大小和方向;

(4)将(3)的结果与长度为l、半径为r的导体内消耗的能量作比较.

I解:(1)电流密度j0?0

S由欧姆定律微分形式j0??E得

E??jI0,方向与电流方向一致

??a2(2)取以导线轴为圆心,垂直于导线的平面圆周l?2?r,则

????由 ?H?dl??j0dS可得 E???j0??lSj0r2H2?r?I02

aI0r,方向与电流成右螺旋 22?a???(3)∵ S?E?H

?∴ S垂直于导线侧面而进入导线,大小为

∴H?

?I02r S?EH?242?a(4)长为l,半径为r(r?a)导体内单位时间消耗能量为

I0r22I0?lr2l W1?I01R?(2)?2?4a?r?a单位时间进入长为l,半径为r导体内的能量

2I0?lr2 W2?S2?rl?4?aW1?W2说明这段导线消耗的能量正是电磁场进入导线的能量.

22*11-8 一个很长的螺线管,每单位长度有n匝,截面半径为a,载有一增加的电流i,求: (1)在螺线管内距轴线为r处一点的感应电场; (2)在这点的坡印矢量的大小和方向. 解: (1)螺线管内 B??0ni

????B??dS 由 ?E?dl???lS?t取以管轴线为中心,垂直于轴的平面圆周l?2?r,正绕向与B成右螺旋关系,则

?BE2?r???r2

?t???0nrdir?Bdi??∴E??,方向沿圆周切向,当?0时,E与B成右螺旋关系;当 2?t2dtdt??di?0时,E与B成左旋关系。 dt题11-8图大小为

??????(2)∵ S?E?H,由E与H方向知,S指向轴,如图所示.

S?EH?Eni??0n2rdi2idt

-1

*11-9 一平面电磁波的波长为3.0cm,电场强度的振幅为30V·m,试问该电磁波的频率为

2

多少?磁场强度的振幅为多少?对于一个垂直于传播方向的面积为0.5m的全吸收面,该电磁波的平均幅射压强是多大? 解: 频率??c??1.0?1010Hz

利用 ?r?0E??r?0H和S?E0H0可得

12B0??0H0??0?0E0?1.0?10?7T

由于电磁波具有动量,当它垂直射到一个面积为A的全吸收表面时,这个表面在?t时间内所吸收的电磁动量为gAc?t,于是该表面所受到的电磁波的平均辐射压强为:

SEHP?gC??00?C2C

?0E02?4.0?10?9 Pa

?02C可见,电磁波的幅射压强(包括光压)是很微弱的.

习题十二

12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?

解: ?不变,为波源的振动频率;?n??空n变小;u??n?变小.

12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;

(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中;

(4)光源作平行于S1,S2联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由?x?D?知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作d2?相反方向的上下移动;(5)零级明纹向下移动.

12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式???中波长,为什么?

解:??nr.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为?t???中,光波的波长要用真空

?. C因为?中已经将光在介质中的路程折算为光在真空中所走的路程。

12-4 如题12-4图所示,A,B两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?

(1) A沿垂直于B的方向向上平移[见图(a)];

(2) A绕棱边逆时针转动[见图(b)].

题12-4图 解: (1)由???2l,ek?k?2知,各级条纹向棱边方向移动,条纹间距不变;

(2)各级条纹向棱边方向移动,且条纹变密. 12-5 用劈尖干涉来检测工件表面的平整度,当波长为?的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.

解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为?e??2,这也是工件缺陷的程度.

题12-5图 题12-6图

12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?

解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚ek位置向中心移动. 12-7 在杨氏双缝实验中,双缝间距d=0.20mm,缝屏间距D=1.0m,试求: (1)若第二级明条纹离屏中心的距离为6.0mm,计算此单色光的波长; (2)相邻两明条纹间的距离.

1?103D?2?, 解: (1)由x明?k?知,6.0?0.2d∴ ??0.6?10?3mm ?6000A

oD1?103?0.6?10?3?3 mm (2) ?x???d0.212-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500A,求此云母片的

厚度.

解: 设云母片厚度为e,则由云母片引起的光程差为

??ne?e?(n?1)e 按题意 ??7?

o7?7?5500?10?10??6.6?10?6m ?6.6?m ∴ e?n?11.58?112-9 洛埃镜干涉装置如题12-9图所示,镜长30cm,狭缝光源S在离镜左边20cm的平面内,

-7

与镜面的垂直距离为2.0mm,光源波长??7.2×10m,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.

题12-9图

解: 镜面反射光有半波损失,且反射光可视为虚光源S?发出.所以由S与S?发出的两光束到达屏幕上距镜边缘为x处的光程差为 ??(r2?r1)?第一明纹处,对应???

?2?dx?? D27.2?10?5?50??4.5?10?2mm ∴x?2d2?0.4?D12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率

为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 A与7000 A这两个波长的单色光在反射中消失.试求油膜层的厚度. 解: 油膜上、下两表面反射光的光程差为2ne,由反射相消条件有

oo2ne?(2k?1)当?1?5000A时,有

o1?(k?)? (k?0,1,2,???) ① 2k2?12ne?(k1?)?1?k1?1?2500 ②

2当?2?7000A时,有

o12ne?(k2?)?2?k2?2?3500 ③

2因,所?2??1以k2?k1;又因为

1

与?2之间不存在?3满足

12ne?(k3?)?3式

2即不存在 k2?k3?k1的情形,所以k2、k1应为连续整数,

即 k2?k1?1 ④ 由②、③、④式可得:

k1?k2?2?1000?1?7k2?17(k1?1)?1? 55得 k1?3

k2?k1?1?2

可由②式求得油膜的厚度为

ok1?1?2500?673100 A的肥皂膜上,设肥12-11 白光垂直照射到空气中一厚度为38e?2nAo皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有

2ne??2?k? (k?1,2,???)

得 ??4ne4?1.33?380020216 ??2k?12k?12k?1ook?2, ?2?6739A (红色) k?3, ?3?4043 A (紫色)

所以肥皂膜正面呈现紫红色.

由透射干涉相长公式 2ne?k?(k?1,2,???) 所以 ??当k?2时, ? =5054A (绿色) 故背面呈现绿色.

o2ne10108 ?kk12-12 在折射率n1=1.52的镜头表面涂有一层折射率n2=1.38的MgF2增透膜,如果此膜适用于波长?=5500 A的光,问膜的厚度应取何值?

解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即

o12n2e?(k?)?(k?0,1,2,???)

21(k?)?2?k??? ∴ e?2n22n24n2o55005500?k??(1993k?996)A 2?1.384?1.38令k?0,得膜的最薄厚度为996A.

当k为其他整数倍时,也都满足要求.

12-13 如题12-13图,波长为6800A的平行光垂直照射到L=0.12m长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d=0.048mm的细钢丝隔开.求: (1)两玻璃片间的夹角???

(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少?

(4)在这0.12 m内呈现多少条明条纹?

oo

题12-13图

解: (1)由图知,Lsin??d,即L??d

故 ??d0.048?4(弧度) ??4.0?103L0.12?102?6800?10?10?6??850?10(3)相邻两暗纹间距l?m?0.85 mm ?42?2?4.0?10L(4)?N??141条

l12-14 用??5000A的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率n1大于薄膜的折射率n(n=1.5).求:

(1)膜下面媒质的折射率n2与n的大小关系; (2)第10条暗纹处薄膜的厚度;

(3)使膜的下表面向下平移一微小距离?e,干涉条纹有什么变化?若?e=2.0 ?m,原来的第10条暗纹处将被哪级暗纹占据?

解: (1)n2?n.因为劈尖的棱边是暗纹,对应光程差??2ne?处,有k?0,只能是下面媒质的反射光有半波损失

o(2)相邻两明条纹空气膜厚度差为?e???3.4?10?7m

?2?(2k?1)?2,膜厚e?0?才合题意; 2

9?9?5000??1.5?10?3 mm

22n2?1.5(因10个条纹只有9个条纹间距)

(2)?e?9??n?(3)膜的下表面向下平移,各级条纹向棱边方向移动.若?e?2.0μm,原来第10条暗纹处现对应的膜厚为?e??(1.5?10?3?2.0?10?3)mm

3.5?10?3?2?1.5?N???21

?n5.0?10?42?e?现被第21级暗纹占据.

12-15 (1)若用波长不同的光观察牛顿环,?1=6000A,?2=4500A,观察到用?1时的第k个暗环与用?2时的第k+1个暗环重合,已知透镜的曲率半径是190cm.求用?1时第k个暗环的半径.

(2)又如在牛顿环中用波长为5000A的第5个明环与用波长为?2的第6个明环重合,求未知波长?2.

解: (1)由牛顿环暗环公式

ooork?kR?

据题意有 r?∴k?kR?1?(k?1)R?2

,代入上式得

?2?1??2r?R?1?2

?1??2190?10?2?6000?10?10?4500?10?10 ? ?10?106000?10?4500?10?1.85?10?3m

?照射,k?5级明环与?的k?6级明环重合,则有 (2)用?1?5000A122(2k1?1)R?1(2k2?1)R?2?

22o2k1?12?5?1?1??5000?4091A ∴ ?2?2k2?12?6?1r?12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由d1=1.40×10m变为d2=1.27×10m,求液体的折射率.

解: 由牛顿环明环公式

-2

-2

r空?D1?2(2k?1)R?

2 r液?D2?2(2k?1)R?

2nD1D121.96?n,即n?2??1.22 两式相除得D2D21.6112-17 利用迈克耳逊干涉仪可测量单色光的波长.当M1移动距离为0.322mm时,观察到

干涉条纹移动数为1024条,求所用单色光的波长.

解: 由 ?d??N?2

?d0.322?10?3得 ??2 ?2??N1024?6.289?10?7m ?6289A

oo12-18 把折射率为n=1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为?=5000A,求此玻璃片的厚度.

解: 设插入玻璃片厚度为d,则相应光程差变化为

2(n?1)d??N?

?N?150?5000?10?10?∴ d??5.9?10?5m?5.9?10?2mm

2(n?1)2(1.632?1)

习题十三

13-1 衍射的本质是什么?衍射和干涉有什么联系和区别? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.

13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.

13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?

答:半波带由单缝A、B首尾两点向?方向发出的衍射线的光程差用

?来划分.对应于第23级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带.

???∵由asin??(2k?1)?(2?3?1)?7?

222?asin??4??8?

213-4 在单缝衍射中,为什么衍射角?愈大(级数愈大)的那些明条纹的亮度愈小?

答:因为衍射角?愈大则asin?值愈大,分成的半波带数愈多,每个半波带透过的光通量

就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.

13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式asin???(2k?1)在水中的波长?

解:当全部装置浸入水中时,由于水中波长变短,对应asin???k????2(k?1,2,?)来测定光的波长,问测出的波长是光在空气中的还是

k?,而空气中为nasin??k?,∴sin??nsin??,即??n??,水中同级衍射角变小,条纹变密.

如用asin???(2k?1)?则应是光在水中的波长.(因asin?(k?1,2,???)来测光的波长,

2只代表光在水中的波程差).

13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.

本文来源:https://www.bwwdw.com/article/0t6v.html

Top