向量公式大全

更新时间:2023-05-02 07:29:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1.向量加法

AB+BC=AC

a+b=(x+x',y+y')

a+0=0+a=a

运算律:

交换律:a+b=b+a

结合律:(a+b)+c=a+(b+c)

2.向量减法

AB-AC=CB 即“共同起点,指向被减”

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.

0的反向量为0

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

3.数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣

当λ>0时,λa与a同方向

当λ<0时,λa与a反方向

当λ=0时,λa=0,方向任意

当a=0时,对于任意实数λ,都有λa=0

『ps.按定义知,如果λa=0,那么λ=0或a=0』

实数λ

向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍

数乘运算律:

结合律:(λa)?b=λ(a?b)=(a?λb)

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b ② 如果a≠0且λa=μa,那么λ=μ

4.向量的数量积

定义:已知两个非零向量a,b 作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

两个向量的数量积(内积、点积)是一个数量,记作a?b 若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉 若a、b共线,则a?b=+-∣a∣∣b∣

向量的数量积的坐标表示:a?b=x?x'+y?y'

向量数量积运算律

a?b=b?a(交换律)

(λa)?b=λ(a?b)(关于数乘法的结合律)

(a+b)?c=a?c+b?c(分配律)

向量的数量积的性质

a?a=|a|2

a⊥b 〈=〉a?b=0

|a?b|≤|a|?|b|

向量的数量积与实数运算的主要不同点 『重要』

1、(a?b)?c≠a?(b?c) 例如:(a?b)2≠a2?b2

2、由 a?b=a?c (a≠0),推不出 b=c

3、|a?b|≠|a|?|b|

4、由 |a|=|b| ,推不出 a=b或a=-b

5、向量向量积

定义:两个向量a和b的向量积是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉.a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

性质

∣a×b∣是以a和b为边的平行四边形面积

a×a=0

a//b〈=〉a×b=0

运算律

a×b=-b×a

(λa)×b=λ(a×b)=a×(λb)

(a+b)×c=a×c+b×c.

『ps.向量没有除法 “向量AB/向量CD”是没有意义的』

6.向量的三角形不等式

∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣

① 当且仅当a、b反向时,左边取等号

② 当且仅当a、b同向时,右边取等号

∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣

① 当且仅当a、b同向时,左边取等号

② 当且仅当a、b反向时,右边取等号

—————————————————————

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式

在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb,xy'-x'y=0

『零向量0平行于任何向量』

向量垂直的充要条件

a⊥b的充要条件是 a?b=0 xx'+yy'=0

『零向量0垂直于任何向量』

7.定比分点

定比分点公式 P1P=λ? PP2

设P1、P2是直线上的两点,P是直线上不同于P1、P2的任意一点 则存在一个实数 λ,使P1P=λ? PP2,λ叫做点P分有向线段P1P2所成的比

若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ) (定比分点向量公式)

x=(x1+λx2)/(1+λ)

y=(y1+λy2)/(1+λ) (定比分点坐标公式)

本文来源:https://www.bwwdw.com/article/0sse.html

Top