A TWO-STAGE ALGORITHM FOR ENHANCEMENT OF REVERBERANT SPEECH
更新时间:2023-07-22 12:41:01 阅读量: 实用文档 文档下载
- 阿根廷推荐度:
- 相关推荐
Room reverberation causes two perceptual distortions on clean speech: Coloration and long-term reverberation. These two effects correspond to two physical variables: Signal-toreverberant energy ratio (SRR) and reverberation time, respectively. Based on thi
ATWO-STAGEALGORITHMFORENHANCEMENTOF
REVERBERANTSPEECH
MingyangWuandDeLiangWang
DepartmentofComputerScienceandEngineering
andCenterforCognitiveScienceTheOhioStateUniversityColumbus,OH43210-1277,USA
Email:mwu@,dwang@cse.ohio-state.edu
ABSTRACT
Roomreverberationcausestwoperceptualdistortionsoncleanspeech:Colorationandlong-termreverberation.Thesetwoeffectscorrespondtotwophysicalvariables:Signal-to-reverberantenergyratio(SRR)andreverberationtime,respectively.Basedonthisobservation,weproposeatwo-stagealgorithmthatenhancesreverberantspeechfromone-microphonerecordings.Inthefirststage,aninversefilterisestimatedtoreducecolorationeffectsorincreaseSRR.Thesecondstageemploysspectralsubtractiontominimizetheinfluenceoflong-termreverberation.Theproposedalgorithmsignificantlyimprovesthequalityofreverberantspeech.Acomparisonwitharecentone-microphoneenhancementalgorithmshowsthatoursystemproducessignificantlybetterresults.
1.INTRODUCTION
Amaincauseofspeechdegradationinpracticallyalllisteningsituationsisroomreverberation.Althoughapersonwithnormalhearingislittleaffectedbyroomreverberationtoaconsiderabledegree,hearing-impairedlistenerssufferfromreverberationeffectsdisproportionally[12].Also,reverberationcausessignificantperformancedecrementforcurrentautomaticspeechrecognition(ASR)andspeakerrecognitionsystems.Consequently,aneffectivereverberantspeechenhancementsystemcanbeusedforimprovingintelligenthearingaidsdesignandisessentialformanyspeechtechnologyapplications.
Inthisarticlewestudyone-microphonereverberantspeechenhancement.Thisismotivatedbythefollowingtwoconsiderations.First,aone-microphonesolutionishighlydesirableformanyreal-worldapplicationssuchashand-freeaudiocommunicationandaudioinformationretrieval.Second,moderatelyreverberantspeechishighlyintelligibleinmonaurallisteningconditions.Hencehowtoachievethismonauralcapabilityremainsafundamentalscientificquestion.
Anumberofreverberantspeechenhancementalgorithmshavebeendesignedutilizingmorethanonemicrophone.Forexample,microphone-arraybasedmethods[6],suchasbeamformingtechniques,attempttosuppressthesoundenergycomingfromdirectionsotherthanthatofthedirectsourceandthereforeenhancetargetspeech.AspointedoutbyKoenigetal.[10],thereverberationtailsoftheimpulseresponses,characterizingthereverberationprocessinaroomwithmultiplemicrophonesandonespeaker,areuncorrelated.Several
«
algorithmsareproposedtoreducethereverberationeffectsbyremovingtheincoherentpartsofreceivedsignals.Blinddeconvolutionalgorithmsaimtoreconstructtheinversefilterswithoutthepriorknowledgeofroomimpulseresponses(forexample,see[8]).BrandsteinandGriebel[5]utilizetheextremaofwaveletcoefficientstoreconstructthelinearprediction(LP)residualoforiginalspeech.
Reverberantspeechenhancementusingonemicrophoneissignificantlymorechallengingthanthatusingmultiplemicrophones.Nonetheless,anumberofone-microphonealgorithmshavebeenproposed.Beesetal.[3]employsacepstrum-basedmethodtoestimatethecepstrumofreverberationimpulseresponse,anditsinverseisthenusedtodereverberatethesignal.Severaldereverberationalgorithms(forexample,see[2])aremotivatedbytheeffectsofreverberationonModulationTransferFunction(MTF).YegnanarayanaandMurthy[16]observedthatLPresidualofvoicedcleanspeechhasdampedsinusoidalpatternswithineachglottalcycle,whilethatofreverberantspeechissmearedandresemblesGaussiannoise.Withthisobservation,LPresidualofcleanspeechisestimatedandthentheenhancedspeechisresynthesized.NakataniandMiyoshi[13]proposedasystemcapableofblinddereverberationbyemployingtheharmonicstructureofspeech.Goodresultsareobtainedbutthisalgorithmrequiresalargeamountofreverberantspeechproducedusingthesameroomimpulseresponsefunction.Despitethesestudies,existingreverberantspeechenhancementalgorithms,however,donotreachaperformanceleveldemandedbymanypracticalapplications.
2.BACKGROUND
Reverberationcausesanoticeablechangeinspeechquality.BerkleyandAllen[4]identifiedthattwophysicalvariables,reverberationtimeT60andspectraldeviation,areimportantforreverberantspeechquality.Considertheimpulseresponseasacombinationofthreeparts,thedirect,early,andlatereflections.Whilelatereflectionssmearthespeechspectraandreducetheintelligibilityandqualityofspeechsignals,earlyreflectionscauseanotherdistortionofspeechsignalcalledcoloration;thenon-flatfrequencyresponseoftheearlyreflectionsdistortsthespeechspectrum.Thecolorationcanbecharacterizedbyaspectraldeviationdefinedasthestandarddeviationofroomfrequencyresponse.Increasingeitherspectraldeviationorreverberationtimeresultsindecreasedreverberantspeechquality.Moreover,Jetzt[9]showsthatspectraldeviationis
Room reverberation causes two perceptual distortions on clean speech: Coloration and long-term reverberation. These two effects correspond to two physical variables: Signal-toreverberant energy ratio (SRR) and reverberation time, respectively. Based on thi
determinedbysignal-to-reverberantenergyratio(SRR),whichistheratiobetweentheenergytravelingdirectlyfromasourcetoalistenerandtheenergyofallacousticreflectionsreachingthelistener,andinturn,itisdeterminedbytalker-to-microphonedistance.Shortertalker-to-microphonedistanceresultsinhigherSRRandlessspectraldeviation,hence,lesscoloration.
Consequently,weproposeatwo-stagemodeltodealwithtwotypesofdegradations–colorationandlong-termreverberation–inareverberantenvironment.Inthefirststage,ourmodelestimatesaninversefiltertoreducecolorationeffectsinordertoincreaseSRR.Thesecondstageemploysspectralsubtractiontominimizetheinfluenceoflong-termreverberation.
3.INVERSEFILTERING
Inthefirststageofouralgorithm,wederiveaninversefiltertoreducethereverberationeffectsandthisstageisadaptedfromamulti-microphoneinversefilteringalgorithmproposedbyGillespieatel.[8].AnFIRinversefilteroftheroomimpulseresponseisestimatedbymaximizingthekurtosisofthelinearprediction(LP)residualofspeechutilizingablockfrequency-domainadaptivefilter.Then,inverse-filteredspeechisobtainedbyconvolvingtheinversefilterwithreverberantspeech.
AtypicalresultfromthefirststageofouralgorithmisshowninFig.1.Fig.1(a)illustratesaroomimpulseresponsefunction(T60=0.3s)generatedbytheimagemodelofAllenandBerkley[1].Theequalizedimpulseresponse–theresultoftheroomimpulseresponseinFig.1(a)convolvedwiththeobtainedinversefilter–isshowninFig.1(b).Ascanbeseen,theequalizedimpulseresponseisfarmoreimpulse-likethantheroomimpulseresponse.Infact,theSRRvalueoftheroomimpulseresponseis–9.8dBincomparisonwith2.4dBforthatoftheequalizedimpulseresponse.
However,theaboveinversefilteringmethoddoesnotimproveonthetailpartofreverberation.Fig.1(c)and(d)showtheenergydecaycurvesoftheroomimpulseresponseandtheequalizedimpulseresponse,respectively.Ascanbeseen,exceptforthefirst50ms,theenergydecaypatternsarealmostidentical,andthustheestimatedreverberationtimesarealmostthesame,around0.3s.WhilethecolorationdistortionisreducedduetotheincreaseofSRR,thedegradationduetoreverberationtailsisnotalleviated.Inotherwords,theeffectofinversefilteringissimilartothatofmovingthesoundsourceclosertothereceiver.Inthenextsection,weintroducethesecondstageofouralgorithmtoreducetheeffectsoflong-termreverberation.
3.SPECTRALSUBTRACTION
Latereflectionsinaroomimpulseresponsefunctionsmearspeechspectrumanddegradespeechintelligibilityandquality.Likewise,anequalizedimpulseresponsecanbedecomposedintotwoparts:earlyandlateimpulses.Resemblingtheeffectsofthelatereflectionsinaroomimpulseresponse,thelateimpulseshavedeleteriouseffectsonthequalityofinverse-filteredspeech;byestimatingtheeffectsofthelateimpulsesandsubtractingthem,wecanexpecttoenhancethespeechquality.
Inapreviousversionofthisalgorithm,WuandWang[15]proposeaone-stagemethodtoenhancethereverberantspeechbyestimatingandsubtractingeffectsoflatereflections.
Thesmearingeffectsoflateimpulsesleadtothesmoothingofthesignalspectruminthetimedomain.Therefore,weassumethatthepowerspectrumoflate-impulsecomponentsisa
(a)
(b)
(c)
Time(ms)
(d)
Fig.1.(a)Aroomimpulseresponsefunctiongeneratedbytheimagemodelinanoffice-sizeroom.(b)Theequalizedimpulseresponsederivedfromthereverberantspeechgeneratedbytheroomimpulseresponsein(a)astheresultofthefirststageofouralgorithm.Energydecaycurves(c)thatcomputedfromtheroomimpulseresponsefunctionin(a).(d)Thatfromtheequalizedimpulseresponsein(b).EachcurveiscalculatedusingtheSchroederintegrationmethod.Thehorizontaldotlinerepresents–60dBenergydecaylevel.Theleftdashlinesindicatethestartingtimesoftheimpulseresponsesandtherightdashlinesthetimesatwhichdecaycurvescross–60dB.
¬
smoothedandshiftedversionofthepowerspectrumoftheinverse-filteredspeechzt:
()
Sl(k;i=γw(i ρ) Sz(k;i),
2
2
(1)
whereSz(k;i)
2
andSl(k;i)
2
are,respectively,theshort-term
powerspectraoftheinverse-filteredspeechandthelate-impulsecomponents.Indexeskandirefertofrequencybinandtimeframe,respectively.Thesymbol denotesconvolutioninthetimedomainandw(i)isasmoothingfunction.Theshort-termspeechspectrumisobtainedbyusinghammingwindowsoflength16mswith8msoverlapforshort-termFourieranalysis.
Room reverberation causes two perceptual distortions on clean speech: Coloration and long-term reverberation. These two effects correspond to two physical variables: Signal-toreverberant energy ratio (SRR) and reverberation time, respectively. Based on thi
¬
TableI.ThesystematicresultsofreverberantspeechenhancementforspeechutterancesoffourfemaleandfourmalespeakersrandomlyselectedfromtheTIMITdatabase.Allsignalsaresampledat8kHz.Speaker/GenderFemale#1Female#2Female#3Female#4Male#1Male#2Male#3Male#4Average
SNRrevfw
SNRYMfw
proc
SNRfw
rev
SNRYMfw
proc rev
SNRfw
short-termphasespectrumofenhancedspeechissettothatofinverse-filteredspeechandtheprocessedspeechisreconstructedfromtheshort-termmagnitudeandphasespectrum.
3.RESULTSANDDISCUSSIONS
Acorpusofspeechutterancesfromeightspeakers,fourfemalesandfourmales,rmallisteningtestsshowthattheproposedalgorithmachievessubstantialreductionofreverberationandhaslittleaudibleartifacts.Toillustratetypicalperformance,weshowtheenhancementresultsinFig.2.Fig.2(a)and(c)showthecleanandthereverberantsignalandFig.2(b)and(d),thecorrespondingspectrograms,respectively.ThereverberantsignalisproducedbyconvolvingthecleansignalandtheroomimpulseresponsefunctioninFig.1(a)withT60=0.3s.Ascanbeseen,whilethecleansignalhasfineharmonicstructureandsilencegapsbetweenthewords,thereverberantspeechissmearedanditsharmonicstructureiselongated.
Toputourperformanceinperspective,wecomparewitharecentone-microphonereverberantspeechenhancementalgorithmproposedbyYegnanarayanaandMurthy[16].WerefertothisalgorithmastheYMalgorithm.TheYMalgorithmappliesweightstoLPresidualsothattheyresemblemorecloselythedampedsinusoidalpatternsofLPresidualfromcleanspeech.Fig.2(e)and(f)showtheprocessedspeechusingtheYMalgorithmanditsspectrogram,respectively.Ascanbeseen,spectralstructureisclearerandsomesilencegapsareattenuated.TheprocessedspeechusingouralgorithmanditsspectrogramareshowninFig.2(g)and(h).Ascanbeseen,theeffectsofreverberationhavebeensignificantlyreducedintheprocessedspeech.Thesmearingislessenedandmanysilencegapsareclearer.ThefigureclearlyshowsthatouralgorithmenhancesthereverberantspeechmorethandoestheYMalgorithm.Anaudiodemonstrationalsocanbefoundathttp://www.cse.ohio-state.edu/~dwang/demo/WuReverb.html.
Quantitativecomparisonsareobtainedfromthespeechutterancesoftheeightspeakersseparatelyutilizingfrequency-weightedsegmentalSNR[14]andpresentedinTableI.SNRrevfw,
(dB)
-3.64-3.51-3.86-4.12-3.86-3.33-3.30-3.50-3.64(dB)-3.06-3.05-3.19-3.29-2.65-2.68-2.53-2.76-2.90(dB)0.920.74-0.200.73-0.921.771.20-0.130.51(dB)0.580.460.680.831.210.650.760.750.74(dB)4.564.253.664.842.945.104.493.384.15
Theshiftdelayρindicatestherelativedelayofthelate-impulsecomponents.Thedistinctionofearlyandlatereflectionsforspeechiscommonlysetatadelayof50msinaroomimpulseresponsefunction[11].Thisdelayreflectsthepropertiesofspeechandisindependentfromreverberationcharacteristics.Consequently,ittranslatestoapproximately7framesforashiftintervalof8ms,andwechooseρ=7asaresult.Finally,thescalingfactor specifiestherelativestrengthofthelate-impulsecomponentsafterinversefilteringandwesetitto0.32.
Consideringtheshapeoftheequalizedimpulseresponse,wechooseanasymmetricalsmoothingfunctionastheRayleighdistribution:
§ i+a2i+a¨
°w(i)=a2exp¨2a2
©®
°¯w(i)=0
·
¸¸¹
ifi> aotherwise
,(2)
¬
wherewechoosea=5anditcontrolsthespanofthesmoothingfunction.Thissmoothingfunctiongoesdowntozeroontheleftsidequicklybuttailsoffslowlyontherightside;therightsideofthesmoothingfunctionresemblestheshapeofreverberationtailsinequalizedimpulseresponses.
Assumingtheearly-andlate-impulsecomponentsareapproximatelyuncorrelated.,thepowerspectrumoftheearly-impulsecomponentscanbeestimatedbysubtractingthepowerspectrumofthelate-impulsecomponentsfromthatoftheinverse-filteredspeech.Theresultsarefurtherusedasanestimateofthepowerspectrumoforiginalspeech.Specifically,spectralsubtraction[7]isemployedtoestimatethepowerspectrumoforiginalspeechS~x(k;i):
2
SNRYMandfw,proc
SNRfw
representthefrequency-weighted
segmentalSNRvaluesofreverberantspeech,theprocessedspeechusingtheYMalgorithm,andtheprocessedspeechusingouralgorithm,respectively.TheSNRgainsbyemployingthe
rev
andYMalgorithmandouralgorithmaredenotedbySNRYMfw
proc rev
SNRfw,respectively.Ascanbeseen,theYMalgorithm
S~x(k;i)=Sz(k;i)
2
2
ªS(k;i)2 γw(i ρ) S(k;i)2º
zz
max«,ε»,(3)2
«»Szk;i¬¼
whereε=0.001isthefloorandcorrespondstothemaximum
attenuationof30dB.
Naturalspeechutterancescontainsilentgaps,andreverberationfillssomeofthegapsrightafterhigh-intensityspeechsections.Weidentifythesesilentgapsbyexaminetheenergyofinverse-filteredspeechandenergyreductionradioafterspectralsubtractioninatimeframe.Foridentifiedsilentframes,allfrequencybinsareattenuatedby30dB.Finally,the
obtainsanaverageSNRgainof0.74dBcomparedtothatof4.15dBbyouralgorithm.
Althoughouralgorithmisdesignedforenhancingreverberantspeechusingonemicrophone,itisstraightforwardtoextenditintomulti-microphonescenarios.Manyinversefilteringalgorithms,suchasthealgorithmbyGillespieetal.[8],areoriginallyproposedusingmultiplemicrophones.Afterinversefilteringusingmultiplemicrophones,thesecondstageofouralgorithm–thespectralsubtractionmethod–canbeutilizedforreducinglong-termreverberationeffects.
Room reverberation causes two perceptual distortions on clean speech: Coloration and long-term reverberation. These two effects correspond to two physical variables: Signal-toreverberant energy ratio (SRR) and reverberation time, respectively. Based on thi
Toconclude,wehavepresentedatwo-stagereverberantspeechenhancementalgorithmusingonemicrophone,andthestagescorrespondtoinversefilteringandspectralsubtraction.Theevaluationsshowthatouralgorithmenhancesthequalityofreverberantspeecheffectivelyandperformssignificantlybetterthanarecentreverberantspeechenhancementalgorithm.
AcknowledgmentsThisresearchwassupportedinpartbyanNSFgrant(IIS-0081058)andanAFOSRgrant(FA9550-04-1-0117).
REFERENCES
[1]J.B.AllenandD.A.Berkley,"Imagemethodforefficientlysimulatingsmall-roomacoustics,"J.Acoust.Soc.Amer.,vol.65,pp.943-950,1979.
[2]C.AvendanoandH.Hermansky,"Studyonthedereverberationofspeechbasedontemporalenvelopefiltering,"inProc.ICSLP,1996,pp.889-892.
[3]D.Bees,M.Blostein,andP.Kabal,"Reverberantspeechenhancementusingcepstralprocessing,"inProc.IEEEICASSP,1991,pp.977-980.
[4]
D.A.BerkleyandJ.B.Allen,"Normallisteningintypicalrooms:Thephysicalandpsychophysicalcorrelatesofreverberation,"inAcousticalfactorsaffectinghearingaidperformance,G.A.StudebakerandI.Hochberg,Eds.,2nded.,NeedhamHeights,MA:AllynandBacon,1993,pp.3-14.
[5]
M.S.BrandsteinandS.Griebel,"Explicitspeechmodelingformicrophonearrayapplications,"inMicrophonearrays:SignalprocessingtechniquesandApplications,M.S.BrandsteinandD.B.Ward,Eds.,NewYork,NY:SpringerVerlag,2001,pp.133-153.
[6]M.S.BrandsteinandD.B.Ward,"MicrophoneArrays:SignalProcessingTechniquesandApplications."NewYork,NY:SpringerVerlag,2001.
[7]J.R.Deller,J.G.Proakis,andJ.H.L.Hansen,Discrete-timeprocessingofspeechsignals,UpperSaddleRiver,NJ:Prentice-Hall,1987.
[8]B.W.Gillespie,H.S.Malvar,andD.A.F.Florêncio,"Speechdereverberationviamaximum-kurtosissubbandadaptivefiltering,"inProc.IEEEICASSP,2001,pp.3701-3704.
[9]J.J.Jetzt,"Criticaldistancemeasurementofroomsfromthesoundenergyspectralresponse,"J.Acoust.Soc.Amer.,vol.65,pp.1204-1211,1979.
[10]A.H.Koenig,J.B.Allen,D.A.Berkley,andT.H.Curtis,"Determinationofmaskingleveldifferencesinanreverberantenvironment,"J.Acoust.Soc.Amer.,vol.61,pp.1374-1376,1977.[11]H.Kuttruff,RoomAcoustics,4thed.,NewYork,NY:SponPress,2000.
[12]
A.K.Nábelek,"Communicationinnoisyandreverberantenvironments,"inAcousticalfactorsaffectinghearingaidperformance,G.A.StubebakerandI.Hochberg,Eds.,2nded.,NeedhamHeight,MA:AllynandBacon,1993.
[13]T.NakataniandM.Miyoshi,"Blinddereverberationofsinglechannelspeechsignalbasedonharmonicstructure,"inProc.IEEEICASSP,2003,pp.92-95.
[14]J.M.Tribolet,P.Noll,andB.J.McDermott,"Astudyofcomplexityandqualityofspeechwaveformcoders,"inProc.IEEEICASSP,Tulsa,OK,1978,pp.586-590.
[15]M.WuandD.L.Wang,"Aone-microphonealgorithmforreverberantspeechenhancement,"inProc.IEEEICASSP,2003,pp.844-847.
[16]
B.YegnanarayanaandP.S.Murthy,"EnhancementofreverberantspeechusingLPresidualsignal,"IEEETrans.SpeechAudioProcessing,vol.8,pp.267-281,
2000.
(a)
(b)
(c)
(d)
(e)
(f)
(g)
Time(sec)
(h)
Fig.2.Resultsofreverberantspeechenhancement:(a)cleanspeech,(b)spectrogramofcleanspeech,(c)reverberantspeech,(d)spectrogramofreverberantspeech,(e)speechprocessedusingtheYMalgorithm,(f)spectrogramof(e),(g)speechprocessedusingouralgorithm,and(h)spectrogramof(g).Thespeechisafemaleutterance“Shehadyourdarksuitingreasywashwaterallyear,”sampledat8kHz.
«
¬
正在阅读:
A TWO-STAGE ALGORITHM FOR ENHANCEMENT OF REVERBERANT SPEECH07-22
停车场地坪漆对水泥基面有什么要求02-27
五年级奥数 数的整除(1)04-07
李海平老师笔译全书10-13
高校提高网球教学质量的思考03-19
公司强制清算实务问题研究01-13
八里店镇镇域总体规划 - 图文05-14
幼儿园园长工作反思06-13
本科毕业论文偿债能力研究03-21
- 1CNN,News:Justin,Bieber,storms,off,stage
- 2英语辩论必看 persuasive speech
- 3Clustering using firefly algorithm Performance study
- 4Further investigation on the dynamic compressive strength enhancement
- 5Using Prosody in Automatic Segmentation of Speech
- 6Efficient Round Robin Scheduling Algorithm with Dynamic Time
- 7英语辩论必看 persuasive speech
- 8Using Prosody in Automatic Segmentation of Speech
- 9An Approximation Algorithm for the Covering Steiner Problem
- 10The One With Two Parts
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- ENHANCEMENT
- REVERBERANT
- ALGORITHM
- SPEECH
- STAGE
- TWO
- 大广赛平面作品赏析
- 恒定电流与理想气态方程
- 2012黑龙江省政府工作报告
- 通信系统建模与仿真
- Access、Hybrid和Trunk的理解
- 论苏轼贬谪诗的创作心态
- 二氧化碳管内流动与换热研究现状及展望
- 【师说】2017届高考地理一轮复习 课时作业30 人类与地理环境的协调发展 新人教版
- 人教版八年级上册物理复习提纲(基础知识点)2013.9—2014.1
- 北京胡同之最具文化气息滴胡同——史家胡同
- 2014合肥教师招聘职位表
- 春季养生保健食品
- 第三军医大学康复医学课程建设改革初探
- 大理石花岗岩地面
- 2013德育工作总结
- 道路新表格填写说明
- 一种大型应用系统硬件选型办法
- 计量经济学实验二 一元线性回归模型的估计、检验和预测
- 第6章 FX2N PLC功能指令及应用
- 从写花词看李清照的人生风貌