Application of wavelets and neural networks to diagnostic system development, 1, feature extraction
更新时间:2023-08-16 01:59:01 阅读量: 教学研究 文档下载
- applications推荐度:
- 相关推荐
卷积神经网络和一些独立成分分析的外文文献
ComputersandChemicalEngineering23(1999)899–906
Applicationofwaveletsandneuralnetworkstodiagnosticsystem
development,1,featureextraction
B.H.Chen,X.Z.Wang*,S.H.Yang,C.McGreavy
DepartmentofChemicalEngineering,TheUni6ersityofLeeds,LeedsLS29JT,UKReceived14July1997;receivedinrevisedform9March1999;accepted9March1999
Abstract
Anintegratedframeworkforprocessmonitoringanddiagnosisispresentedwhichcombineswaveletsforfeatureextractionfromdynamictransientsignalsandanunsupervisedneuralnetworkforidenti cationofoperationalstates.Multiscalewaveletanalysisisusedtodeterminethesingularitiesoftransientsignalswhichrepresentthefeaturescharacterisingthetransients.Thissimultaneouslyreducesthedimensionalityofthedataandremovesnoisecomponents.Amodi edversionoftheadaptiveresonancetheoryisdeveloped,whichisdesignatedARTnetanduseswaveletfeatureextractionasthesubstituteofthedatapre-processingunit.ARTnetisprovedtobemoreeffectiveindealingwithnoisecontainedinthetransientsignalswhileretainsbeinganunsupervisedandrecursiveclusteringapproach.Theworkisreportedintwoparts.The rstpartisfocusedonfeatureextractionusingwavelets.ThesecondpartdescribesARTnetanditsapplicationtoacasestudyofare nery uidcatalyticcrackingprocess.©1999ElsevierScienceLtd.Allrightsreserved.
1.Introduction
Inmodernprocessplantscontrolledbydistributedcontrolsystems,theroleofoperatorshaschangedfrombeingprimarilyconcernedwithcontroltoabroadersupervisoryresponsibility:analysingoperationaldata,identifyingunusualconditionsastheydevelopandrespondingrapidlyandeffectivelybytakingcorrectiveactions.Thisisachallengingtaskbecauseoftheover-whelmingvolumeofdataoperatorshavetodealwith.Inrecentyearstherehasbeenasigni cantprogressinapplyingintelligentsystemsforprocessmonitoringanddiagnosis.Thisincludestheuseofneuralnetworks,multivariatestatisticalanalysis,expertsystemsaswellasqualitativesimulation.Itisrecognisedthatinprocessmonitoringanddiagnosis,puterbasedprocessingofdynamictrendsignalsisaimedatnoiseremovaland
*Correspondingauthor.Tel.:+44-113-233-2427;fax:+44-113-233-2405.
E-mailaddress:x.z.wang@leeds.ac.uk(X.Z.Wang)
dimensionreductionusingminimumdatapointstocapturethefeaturescharacterisingthetrendsignals.Variousapproacheshavebeenproposedandtheiref-fectivenessdependslargelyonhowtheprocessedinfor-mationistobeused,i.e.byhumanexperts,expertsystemsorneuralnetworks.Inthiswork,anintegratedframework,ARTnetisdevelopedandsubsequentlyap-pliedtoacasestudyofare nery uidcatalyticcrack-ingprocess.ARTnetisamodi edversionoftheadaptiveresonancetheory(ART2)(CarpenterandGrossberg,1987;Whiteley&Davis,1992,1994;White-ley,Davis,Mehrotra,&Ahalt,1996)whichuseswavelettransformsasthesubstituteofthedatapre-processingunitofART2.
Theworkisreportedintwoparts.The rstpartisfocusedonfeatureextractionfromdynamictransientsignalsusingwavelettransformsandthesecondpartisconcernedwiththeintroductionofARTnetanditsapplicationtoacasestudyofare nery uidcatalyticcrackingprocess.The rstpartisorganisedasfollows.InSection2somerepresentativeapproachesforfeatureextractionarebrie yreviewed.Thisnaturallyleadstotheintroductionofwaveletmultiscaleanalysisforfea-tureextractioninSection3.Waveletmultiscaleanalysis ndstheextremaofatransientsignalandanimportant
0098-1354/99/$-seefrontmatter©1999ElsevierScienceLtd.Allrightsreserved.PII:S0098-1354(99)00258-6
卷积神经网络和一些独立成分分析的外文文献
900B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906
issueishowtoremovetheeffectsofnoisecomponentsandachieveconsistentresultsindifferentscales.ThisisthesubjectofSection4.
2.Previousworkonfeatureextractionofdynamictransients
Thissectionbrie yreviewssomeofthepreviousworkonfeatureextraction.Featureextractionisbasi-callyatransformationofthedatacomposingady-namictrendtoalowerdimensionality.Animportantpropertyofsuchatransformationisthatitisinforma-tionpreserving,thatis,dataisreducedbyremovingredundantcomponentswhilepreserving,insomeopti-malsense,informationwhichiscrucialforpatterndiscrimination.
Someresearchershaveadaptedtheepisoderepresen-tationtechniqueoriginatedbyWilliam(1986)toquali-tativeinterpretationoftransientsignals.JanuszandVenkatasubramanian(1991)developedanepisodeap-proachthatusesnineprimitivestorepresentanyplotsofafunction.Eachprimitiveconsistsofthesignsandthe rstandsecondderivativesofthefunction.There-fore,eachprimitivepossestheinformationaboutwhetherthefunctionispositiveornegative,increasing,decreasing,ornotchangingandtheconcavity.Anepisodeisanintervaldescribedbyonlyoneprimitiveandthetimeintervaltheepisodespans.Atrendisaseriesofepisodesthatwhengroupedtogethercancom-pletelydescribethedynamicfeature.Theapproachautomaticallyconvertson-linesensordatatoqualita-tiveclassi cationtrees.CheungandStephanopoulos(1990)developedaslightlydifferentapproachcalledtriangular-episodethatusesseventrianglecomponentstodescribeadynamictrend.BakshiandStephanopou-los(1994,1996)usedwaveletdecompositionoffunc-tionsindifferentscalesandzero-crossingofwaveletderivativesto ndthein ectionsofdecomposition.Inthisway,episodescanbeidenti edautomaticallybycomputers.Basedonepisodeanalysis,dynamictrendscanbeinterpretedassymbolicrepresentations.Themainideaofdynamictrendinterpretationusingepisodeapproachesistoclassifyatrendsuchasincreasingordecreasingpieces.Thisinterpretationissometimesnotenoughandinadequateinprocessanalysis.Further-more,thereisnonoise lteringinanyoftheepisodebasedapproaches,whichsigni cantlylimitsthetrendrepresentationandidenti cationcapability.
WhiteleyandDavis(1992)appliedback-propagationneuralnetworks(BPNN)toconvertnumericalsensordataintosymbolicabstractions.Themajorlimitationofthisapproachisthatitrequirestrainingdatatotrainthemodel rst.
ThemostwellknowntechniqueforsignalanalysisisprobablytheFouriertransformanditistherefore
necessarytomentionedithere.Fouriertransformusessineandcosineasitsbuildingblockstodecomposeafunctionintoasumoffrequencycomponents.How-ever,Fouriertransformdoesnotshowhowfrequencyvarieswithtime,thereforeitisnotabletodetectwhenaparticulareventtookplace.Itmeansthatthenon-sta-tionaryfeatureofthesignalisnotcaptured.Theshort-timeFouriertransformisabletoovercomethislimitationbyslidingawindowoverthesignalintime.Howeverintime-frequencyanalysisofanon-stationarysignal,therearetwocon ictingrequirements.Thewin-dowwidthmustbelongenoughtogivethedesiredfrequencyresolutionbutmustalsobeshortenoughtolosetrackoftimedependentevents.Whileitispossibletooptimisethedesignofwindowshapestooptimise,ortrade-offtimeandfrequencyresolution,thereisafun-damentallimitationonwhatcanbeachieved,foragiven xedwindowwidth(Dai,Joseph&Motard,1994).
3.Featureextractionusingwavelettransform
Averybriefintroductionofwavelettransformationforsignalprocessingisnowpresented.Thenthemethodemployedinthisstudyforfeatureextractionusingwaveletsisintroducedandillustratedusingexamples.
3.1.Signaltransformationusingwa6elets
Wavelettransformationisdesignedtoaddresstheproblemofnon-stationarysignals.Itinvolvesrepre-sentingatimefunctionintermsofsimple, xedbuild-ingblocks,termedwavelets.Thesebuildingblocksareactuallyafamilyoffunctionswhicharederivedfromasinglegeneratingfunctioncalledthemotherwaveletbytranslationanddilationoperations.Dilation,alsoknownasscaling,compressesorstretchesthemotherwaveletandtranslationshiftsitalongthetimeaxis.&
Themotherwaveletsatis es
+
(t)dt=0(1)
andthetranslationandscalingoperationson (t)createsafamilyoffunctions,
=
1a,b(t) t ba
(2)Theparameteraisascalingfactorandstretches(or
compresses)themotherwavelet.Theparameterbisatranslationalongthetimeaxisandsimplyshiftsawaveletandsodelaysoradvancesthetimeatwhichitisactivated.Mathematicallydelayingafunctionf(t)bytdisrepresentedbyf(t td).Thefactor1/ aisusedtoensuretheenergyofthescaledandtranslatedversionsarethesameasthemotherwavelet.
卷积神经网络和一些独立成分分析的外文文献
B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906901
Thestretchedandcompressedwaveletsthroughscal-ingoperationareusedtocapturethedifferentfre-quencycomponentsofthefunctionbeinganalysed.Thetranslationoperation,ontheotherhand,involvesshift-ingofthemotherwaveletalongthetimeaxistocapturethetimeinformationofthefunctiontobeanalysedatadifferentposition.Inthisway,afamilyofscaledandtranslatedwaveletscanbecreatedusingscalingandtranslationparametersaandb.Thisallowssignalsoccurringatdifferenttimesandhavingdifferentfre-quenciestobeanalysed.Incontrasttotheshort-timeFouriertransform,whichusesasingleanalysiswindowfunction,thewavelettransformcanuseshortwindowsathighfrequenciesorlongwindowsatlowfrequencies.Thuswavelettransformiscapableofzooming-inonshort-livedhighfrequencyphenomenaandzooming-outonsustainedlowfrequencyphenomena.Thisisthemainadvantageofthewaveletovertheshort-timeFouriertransform.
Wavelettransformcanbecategorisedintocontinu-ousanddiscrete.Continuous,inthecontextofwavelettransform,impliesthatthescalingandtranslationparametersaandbchangecontinuously.However,calculatingwaveletcoef cientsforeverypossiblescalecanrepresentaconsiderableeffortandresultinavastamountofdata.Thereforediscreteparameterwavelettransformisoftenused.Thediscreteparameterwavelettransformusesscaleandpositionvaluesbasedonpow-ersoftwo-so-calleddyadicscalesandpositionsandmakestheanalysismuchmoreef cient,whilstremain-ingaccurate.Todothis,thescaleandtimeparametersarediscretisedasfollows,a=am0,
b=nb0an0
m,nareintegers
(3)
Thefamilyofwavelets{ m,n(t)}isgivenby
m,n(t)=a 0m/2 (a 0
m
t nb0)(4)
resultinginadiscretewavelettransform(DWT)havingtheform
DWTf(m,n)= f, m,n
+
=a
0
m/2&
f(t) (a 0
m
t nb0)(5)
Mallat(1989)developedanapproachforimplement-ingthisusing lters.Formanysignals,thelowfre-quencycontentisthemostimportantpart.Thehigh
frequencycontent,ontheotherhandprovides avourornuance.Inwaveletanalysisthelowfrequencycon-tentiscalledtheapproximationandthehighfrequencycontentiscalledthedetail.The lteringprocessuseslowpassandhighpass lterstodecomposeanoriginalsignalintotheapproximationanddetailparts.Itisnotnecessarytopreservealltheoutputsfromthe lters.Normallytheyaredownsampledandkeeponlytheevencomponentsofthelowpassandhighpass lteroutputs.
Thedecompositioncanbeiterated,withsuccessive
approximationsbeingdecomposedinturn,sothatonesignalisbrokenintomanylower-resolutioncomponents.
Inthecaseofadiscretewavelettransform,recon-structionoftheoriginalsignalisnotguaranteed.Daubechies(1992)developedconditionsunderwhichthe{ m,n}ually,a0=2andb0=1areused,althoughanyvaluescanbeused.Inthiscase,boththetransformandreconstructionarecompletebecausethefamilyofwaveletsformanor-thonormalbasis.
3.2.Singularitydetectionusingwa6eletsforfeatureextraction
Singularitiesoftencarrythemostimportantinforma-tioninsignals.Singularitiesofasignalcanbeusedasthecompactrepresentation,i.e.thefeaturesoftheoriginalsignal.Mathematically,thelocalsingularityofafunctionismeasuredbyLipschitzexponents(Mallat&Hwang,1992).MallatandHwang(1992)provedthatthelocalmaximaofthewavelettransformmodulusdetectsthelocationsofirregularstructuresandpro-videsnumericalproceduresforcomputingtheLipschitzexponents.Withintheframeworkofscale-space lter-ing,in exionpointsoff(t)appearasextremafor(f(t)/(tandzerocrossingfor(2f(t)/(t2,soMallatandZhong(1992)suggestsusingawaveletwhichisthe rstderivativeofascalingfunctionF(t), (t)=
d (t)dt
withacubicspinebeingusedforthescalingfunction.BakshiandStephanopoulos(1996)usedthein exionpointsastheconnectionpointsofepisodesegmentsofasignal.
Thewaveletmodulusmaximaandzero-crossingrep-resentationsweredevelopedfromunderlyingcontinu-ous-timetheory.Forcomputerimplementation,thishastobecastindiscrete-timedomain.BermanandBaras(1993)provedthatwavelettransformextrema/zero-crossingprovidestablerepresentationsof nitelengthdiscrete-timesignals.Amorecompletediscrete-timeframeworkfortherepresentationofthewavelettransformwasdevelopedbyCvetkovicandVetterli(1995)andthereforeisusedinthisstudy.Theyde-signedanon-subsampledmulti-resolutionanalysis ingthis lterbank,thewaveletfunctioncanbeselectedfromawiderrangethantheB-splineinMallat’smethod.Non-subsampledmulti-resolutionanalysiswasusedtodeterminesingularitiesofasignal.Anoctavebandnon-subsampled lterbankwithanalysis ltersH0(z)andH1(z)isshowninFig.1.Inthismethod,awavelettransformreferstotheboundedlinearoperators
卷积神经网络和一些独立成分分析的外文文献
902B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906
Wj:l2(Z) l2(Z);j=1,2,…j+1.TheoperatorsWj,aretheconvolutionoperatorswiththeimpulsere-sponsesofthe lters:V1(z)=H1(z)V2(z)=H0(z)H1(z2)Vj(z)=H0(z)···H1
0(z2
j 2
)H1(z2
j )Vj+1(z)=H 1
0(z)···H0(z2
j 2
)H0(z2
j)
ThemultiresolutionproceduredepictedinFig.1canbedescribedlessrigorously.Fig.1showsfoursteps,orfourscales.Inthe rstscale,theoriginalsignalissplitintoapproximationAx1anddetailDx1.ThedetailDx1issupposedtobemainlythenoisecomponentsoftheoriginalsignal.Ax1isfurtherdecomposedintoapprox-imationAx2anddetailDx2,Ax2toAx3andDx3andAx3toAx4andDx4.Ineachsteptheextremaofthedetailarefound.Apparently,inthe rstfewsteps,theextremaarebothasaresultofthenoiseandthetrendofthenoise-freesignal.Withscalesbeingincreased,thenoiseextremawillgraduallyberemovedwhiletheextremaofthenoise-freesignalremain.Inthisway,throughmulti-scaleanalysisandextremadetermina-tion,theextremaofthenoise-freesignalcanbefound,whichareregardedasthefeaturesofthesignal.
Fortherepresentationofextrema,itisconvenienttousea niteimpulseresponse(FIR)wavelet lter.TheFIRisa lterwiththesequence{ak:k Z}andhasonlyKnon-zeroterms.AtypicalexampleistheHaarwavelet,whichhasonlytwonon-zerocoef cients.Daubechies’wavelets(Daubechies,1992)arealsoFIR ltersandsmootherthantheHaarwavelet.Daubechies’waveletshavingmorecoef cientsaresmootherandhavehighervanishingmoments.Theyalsorequirelesscomputationaleffortastheyarecon-structedby lterconvolution.
Fig.1.Anoctavebandnon-subsampled lterbank.
TheDaubechies’scaleandwaveletfunctionsareexpressedas
(t)=%h(k) (2t k)
(6)k
(t)=%g(k) (2t k)
(7)
k
where{h(k)}isthelow-pass ltercoef cientsand{g(k)}theband-pass ltercoef cients.
Daubechies’waveletshaveamaximumnumberofvanishingmomentsforthesupportspace.Thevanish-ingmomentsofthewaveletsalsohaveadifferentnumberofcoef ingwaveletswithmorevan-ishingmomentshastheadvantageofbeingabletomeasuretheLipschitzregularityuptoahigherorder,whichishelpfulin lteringnoise,butitalsoincreasesthenumberofmaximalines.Thenumberofmaximaforagivenscaleoftenincreaseslinearlywiththenum-berofmomentsofthewavelet.Inordertominimisecomputationaleffort,itisnecessarytohaveaminimumnumberofmaximatodetectthesigni cantirregularbehaviourofasignal.ThismeanschoosingawaveletwithasfewvanishingmomentsaspossiblebutwithenoughmomentstodetecttheLipschitzexponentsofthehighestordercomponentsofinterest.
Inthisstudy,aneightcoef cient‘least-asymmetric’Daubechies’waveletisusedasa lter.Thescaleandwaveletfunctionforthis lterareillustratedinFig.2.Asignalf(t)=sin(t)anditsextremaofwaveletanalysisusingnon-subsampled lterbankwithDaubechies’eightcoef cientsleastasymmetrywaveletisillustratedinFig.3,whichshowsthatextremaofwaveletanalysiscorrespondtothesingularitiesofthesignal.InFig.3b,thewaveletisusedas lterandthe rstsingularityofthesignalinFig.3acorrespondstominimumofwaveletanalysis.InFig.4itisamaximumbecauseadifferentwaveletisemployed.Theformerisusedhere.
3.3.Noiseextremaremo6al
Theextremaobtainedfromwaveletmulti-resolutionanalysiscorrespondtothesingularitiesofthesignal,whichmayalsoincludethoseproducedbynoise,de-pendingontheanalysisscales.Therefore,infeatureextractionitisnecessarytofurtheridentifyand lteroutnoiseextremafromwavelettransform.Themostclassicaltechniqueofremovingnoisefromasignalisto lterit.Partofthenoiseisremovedbutitmayalsosmooththesignalsingularitiesatthesametime.MallatandHwang(1992)andMallatandZhong(1992)devel-opedatechniqueforevaluatingnoiseextremainwaveletanalysis.Theyfoundthatsomenoisemaximaincreaseonaveragewhenthescaledecreasesordon’tpropagatetolargerscales.Thesearethemodulusmax-imawhicharemostlyin uencedbynoise uctuations.
卷积神经网络和一些独立成分分析的外文文献
B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906903
Fig.2.The‘least-Asymmetric’scalefunctionandwaveletfunction.
Fig.3.Signal(a)anditsextrema(b)ofwaveletanalysisusingDaubechies’eightcoef cientswavelet.
Fig.5andFig.6illustratethisidea.InFig.5,threedifferentnoisefrequenciesarestudied.Thewaveletmulti-resolutionanalysisisshownontheleftandex-tremaofwaveletanalysisareontheright.Clearly,theextremawilldecreaseandthendisappearasthescaleincreases.
Fig.6showsasignalwhichisbasicallythesineinFig.3acorruptedbywhitenoiseaswellasthewaveletmulti-scaleextremaanalysis.Noisecomponentsarere-ducedandthendisappearasthescaleincreases.Theresultsforscales-4and-5aresimilartothatofFig.3bwhichisnoise-free.Thisshowsthattheextremaofthetrendsignalareretainedwhilenoiseextremaare ltered.
theextremarepresentationinscale-4isavectorofdimension70,
Scale-4=(…x5…x23…x37…x53…)
wherex5standsforanon-zerodatumincolumn5.Whileinscale-5,itbecomes
3.4.Piece-wiseprocessing
Twoobservationsaremadeabouttheabovediscus-sions.Firstly,extremaanalysisusingwaveletmultireso-lutionanalysisremainssteadywiththeincreaseofscales,sotherepresentationissteady.Forexample,inFig.6whenthescaleisincreasedfromfourto ve,thefourextremaremain.Secondly,thelocationofextremamayslightlyshiftwithtimeasscaleincreases.InFig.6,
Fig.4.ExtremaofwaveletanalysisusingDaubechies’tencoef cientswavelet.
卷积神经网络和一些独立成分分析的外文文献
904B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906
Fig.5.Noisesignal,itswavelettransformationandtheextremaofwaveletanalysis.
Scale-5=(…x7…x22…x38…x54…)
Itisobviousthatnon-zerodatumintheposition5ofscale-4isshiftedtotheposition7ofscale-5.Thisinconsistencyshouldbeavoided.Forinstance(2,0…0,3)and(2,0…3,0)shouldbeconsidereddif-ferent.Thisisnecessaryespeciallywhenthetrendsofavariableatdifferentoperationsconditionsareconsidered.
Theextremarepresentationcanbehighlysparsevec-tors.Thisistrueforprocessdynamicresponseswhichare
slowinfrequency.Themethodweusediscalledpiece-wiseprocessing.Theideaistomapahighlysparsevectortoadenservectorbydimensionreduction.Forexample,withscale-4andscale-5discussedabove,ifthepiece-wisesub-regionis xedasfourdatapoints,thenscale-4andscale-5willbetransformedtovectorsofdimension18.Scale-4%=(…x2…x6…x10…x13…)Scale-5%=(…x2…x6…x10…x13…)
Itisclearthatafterpiece-wiseprocessing,thedimen-
卷积神经网络和一些独立成分分析的外文文献
B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906905
sionisreducedandscale-4%andscale-5%areconsistent.Thereforeusingpiece-wiseprocessingtechnique,itcanachieveconsistentfeatureextractionaswellasdimen-sionreduction.
4.FinalRemarks
Featuresofaprocessdynamictransientsignalareidenti edasthesingularitiesandirregularitiesbecausetheycontainthemostimportantinformationcorre-spondingtochangesofoperationalstates.Theap-
proachdevelopedbyMallatandHwang(1992)andCvetkovicandVetterli(1995)fordeterminingsingulari-tiesandirregularitiesisintroducedforfeatureextrac-tionofdynamictransientsignalsofprocessoperations,whicharetheextremaofwaveletanalysis.Anapproachfornoiseextremaremovalandpiece-wisedimensionreductionarealsodiscussed.Inthesecondpartofthepaper,theuseoftheapproachtoreplacethedatapre-processingpartoftheadaptiveresonancetheorytodevelopamoreef cientunsupervisedandrecursivelearningsystemARTnetanddescribeitsapplicationtoare nery uidcatalyticcrackingprocessisreported.
Fig.6.Noisesignalanditsmulti-resolutionanalysis.Axi,approximationofmultiresolutionanalysis;Dxi,detail.
卷积神经网络和一些独立成分分析的外文文献
906B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906
5.NotationAapproximationinwaveletmultiresolutionanalysis
awaveletdilationparameter
a0,b0discretewavelettransformparametersbwavelettranslationparameter
D
detailinwaveletmultiresolutionanalysisDWTfdiscretewaveletcoef cientf(t)afunctioninthetimedomaing(k)thekthwaveletsynthesis lterHwaveletanalysis lter
h(k)thekthwaveletanalysis lter
m,ndiscretewavelettransformparameterssscalettime
GreekaLipchitzexponent waveletfunction
(t)
waveletscalefunctionororthogonalfunction
Acknowledgements
Theauthorsareindebtedtotheanonymousrefereesfortheirconstructivecommentswhichledtoanim-provedmanuscript.Theauthorsacknowledgethepartial nancialsupportoftheAigisSystems,USA.The rstauthorthanksthe nancialsupportoftheSino-BritishFriendshipScholarshipScheme(SBFSS).
References
Bakshi,B.R.,&Stephanopoulos,G.(1996).Reasoningintime:
modelling,analysisandpatternrecognitionoftemporalprocesstrends.InG.Stephanopoulos,&C.Han,IntelligentSystemsinProcessEngineering-ParadigmsfromDesigntoOperations(pp.487–549).
.
Bakshi,B.R.,&Stephanopoulos,G.(1994).Representationof
processtrends-3:putersandchemicalEngineering,18,267–302.
Berman,Z.,&Baras,J.S.(1993).Propertiesofthemulti-scale
maximaandzerocrossingrepresentations.IEEETransactionsonSignalProcessing,41,3216–3231.
Carpenter,G.A.,&Grossberg,S.(1987).ART2:self-organisation
ofstablecategoryrecognitioncodesforanalogueinputpat-terns.AppliedOptics,26,4919–4930.
Cheung,J.T.Y.,&Stephanopoulos,G.(1990).Representationof
processtrends-1:putersandchemicalEngineering,14,495–510.
Cvetkovic,Z.,&Vetterli,M.(1995).Discrete-timewaveletextrema
representation:designandconsistentreconstruction.IEEETransactionsonSignalProcessing,43,681–693.
Dai,X.,Joseph,B.,&Motard,R.L.(1994).Introductionto
wavelettransformationandtimefrequencyanalysis.InR.L.Motard,&B.Joseph,Wa6eletApplicationsinChemicalEngi-neering(pp.1–32).Dordrecht:Kluwer.
Daubechies,I.(1992).Tenlecturesonwa6elets.Philadelphia,PA:
SocietyofIndustrialandAppliedmathematics.
Janusz,M.E.,&Venkatasubramanian,V.(1991).Automaticgen-erationofqualitativedescriptionsofprocesstrendsforfaultdetectionanddiagnosis.EngineeringApplicationsArti cialIntel-ligence.,4,329–339.
Mallat,S.(1989).Atheoryformultiresolutionsignaldecomposi-tion:thewaveletrepresentation.IEEEPatternAnalysisandMachineIntelligence,11,674–693.
Mallat,S.,&Hwang,W.L.(1992).Singularitydetectionandpro-cessingwithwavelets.IEEETransactionsoninformationtheory,38,617–643.
Mallat,S.,&Zhong,S.(1992).Characterisationofsignalsfrom
multi-scaleedges.IEEETransactionPatternAnalysisandMa-chineIntelligence,14(7),710–732.
Whiteley,J.R.,&Davis,J.F.(1992)putersandChemicalEnginering,16,329–346.
Whiteley,J.R.,&Davis,J.F.(1994).Asimilarity-basedapproach
putersandChemicalEngineering,18,637–661.
Whiteley,J.R.,Davis,J.F.,Mehrotra,A.,&Ahalt,S.C.(1996).
ObservationsandproblemsapplyingART2fordynamicsensorpatterninterpretation.IEEETransactionsonSystemManualCyberneticsPartA:SystemsandHumans,26,423–437.
William,B.C.(1986)Doingtime:puttingqualitativereasoningon
rmerground.NationalConferenceonArti cialIntelligence,Philadelphia.
正在阅读:
Application of wavelets and neural networks to diagnostic system development, 1, feature extraction08-16
大学生宿舍人际关系现状、问题及对策研究05-11
2017-2018苏教版五年级下册《小学生数学报》学习能力检测卷(全册05-17
植物学试题及答案11-15
___律师事务所关于____________股份有限公司以通讯方式召开___年04-17
办公室总结(共五则范文)08-23
依法行政依法办事规章制度04-23
蓝天幼儿园小班周计划活动表03-29
春江花月夜/张若虚_教学设计_教案04-05
- 1This is page 1 Printer Opaque this Empirical Bayesian Spatial Prediction Using Wavelets
- 2Feature Reduction for Document Clustering and Classification
- 3LIHP Application Presentation 1-28-11 - California
- 4PPF - Development - Guide
- 5Application_Instructions
- 6This is page 1 Printer Opaque this Empirical Bayesian Spatial Prediction Using Wavelets
- 7Model_Development_for_Auto_Spare_Parts_Inventory_Control_and_Management1
- 8Practical Feature Subset Selection for Machine Learning
- 9HPLC Method development
- 10HPLC Method development
- 公务员上岸同学告诉你,怎样走出面试中常见的十大误区
- 作表率,我们怎么办(办公室主任)
- 乘务员安全责任书
- 增员面试流程
- 河南省焦作市规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 最新4社区工作者面试题
- 个人简历表
- 男教工体检必检项目
- 河南省兰考县规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 兼职译员测试稿
- 河南省开封市规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 永州职业技术学院校园总体规划-永州职业学院
- 最新5、培训科长笔试题(答案)
- 2019雅商酒店境外人员登记培训稀有资料,不可错过
- 小学教师求职简历范文
- 红酒知识与礼仪
- 春节给领导拜年的短信拜年词
- 2019年上半年中小学教师资格证结构化面试真题1
- 20XX年县干部培训工作目标
- 硬笔试听课
- development
- Application
- diagnostic
- extraction
- wavelets
- networks
- feature
- neural
- system