东北大学Matlab实验课作业
更新时间:2023-09-28 20:15:01 阅读量: 综合文库 文档下载
第一部分
第2题
>>A=[1 2 3 4;4 3 2 1;2 3 4 1;3 2 4 1]
A =
1 2 3 4 4 3 2 1 2 3 4 1 3 2 4 1 >> B=[1+4i 2+3i 3+2i 4+1i; 4+i 3+2i 2+3i 1+4i; 2+3i 3+2i 4+1i 1+4i;
3+2i 2+3i 4+1i 1+4i;] B =
1.0000 + 4.0000i 2.0000 + 3.0000i 4.0000 + 1.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 3.0000 + 2.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i >> A(5,6)=5 A =
1 2 3 4 0 0 4 3 2 1 0 0 2 3 4 1 0 0 3 2 4 1 0 0 0 0 0 0 0 5 第3题
>> A=magic(8)
A =
64 2 3 61 60 6 9 55 54 12 13 51 17 47 46 20 21 43 40 26 27 37 36 30 32 34 35 29 28 38 41 23 22 44 45 19 49 15 14 52 53 11 8 58 59 5 4 62
>> B=A(2:2:end,:)
3.0000 + 2.0000i 2.0000 + 3.0000i 4.0000 + 1.0000i 4.0000 + 1.0000i 7 57 50 16 42 24 31 33 39 25 18 48 10 56 63 1 4.0000 + 1.0000i 1.0000 + 4.0000i 1.0000 + 4.0000i 1.0000 + 4.0000i B =
9 55 54 12 13 51 50 16 40 26 27 37 36 30 31 33 41 23 22 44 45 19 18 48 8 58 59 5 4 62 63 1 第4题.
>> format long; >> sum(2.^[0:63])
ans =
1.844674407370955e+019
>> syms k;
>> symsum(2^k,k,0,200)
ans =
3213876088517980551083924184682325205044405987565585670602751
第5题.
(1) >> syms t;
>> t=[-1:0.01:1]; >> f=sin(1./t); >> plot(t,f)
(2) >> syms t;
t=[-pi:0.01:pi];
f=sin(tan (t))-tan(sin (t)); >> plot(t,f)
第6题.
>>syms x y;
>> [x,y]=meshgrid(-5:0.2:5,-5:0.2:5);
>>z=1./sqrt((1-x).^2+y.^2)+1./sqrt((1+x).^2+y.^2); >> subplot(221),surf(x,y,z)
>> subplot(222),surf(x,y,z),view(0,0) >> subplot(223),surf(x,y,z),view(90,0) >> subplot(224),surf(x,y,z),view(0,90)
第7题.
>> syms x;
>> f=(3^x+9^x)^(1./x); >> L=limit(f,x,inf)
L =
9
>> syms x y ;
>> f=(x*y)/(((x*y)+1)^(1/2)-1); >> L=limit(limit(f,x,0),y,0)
L =
2
>> syms x y;
>>z=(1-cos(x^2+y^2))./((x^2+y^2)*exp(x^2+y^2)); >> L=limit(limit(z,x,0),y,0)
L =
0 第8题.
首先定义函数
function reasult=paradiff(y,x,t,n)
if mod(n,1)~=0,error('should positive integer,please correct') else if n==1,reasult=diff(y,t)/diff(x,t);
else reasult=diff(paradiff(y,x,t,n-1)/diff(x,t)); end, end
调用函数进行计算: >>syms t;
y=log(cos(t)); x=cos(t)-t*sin(t);
f=simple(paradiff(y,x,t,1)) f =
sin(t)/(cos(t)*(2*sin(t) + t*cos(t)))
m=simple(paradiff(y,x,t,3)),t=pi/3 m =
(36*t*cos(t)^5 - 69*t*cos(t)^3 + 18*t*cos(t) + sin(t)*(cos(t)^2*(15*t^2 cos(t)^4*(6*t^2 - 56) + 8))/(cos(t)^3*(2*sin(t) + t*cos(t))^5)
t =
1.0472
第9题 .
>> syms x t y;
>> I=int(exp(-t^2),t,0,x*y);
>> m=x/y*diff(diff(I,x),x)-2*diff(diff(I,x),y)+diff(diff(I,y),y) m =
2*x^2*y^2*exp(-x^2*y^2) - 2*x^3*y*exp(-x^2*y^2) - 2*exp(-x^2*y^2) 第10题.
(1) >> syms n;
>> f=symsum(1/((2*n)^2-1),n,1,inf)
f =
1/2
(2) >> syms n k;
>> f=simple(limit(symsum(n*(1/(n^2+k*pi)),k,1,n),n,inf)) f = 1
第11题.
(1)>>syms t;
>> syms a positive;
- 22) - >> x=a*(cos(t)+t*sin(t)); >> y=a*(sin(t)-t*cos(t));
>> I=int((x^2+y^2)*sqrt(diff(x,t)^2+diff(y,t)^2),t,0,2*pi)
I =
2*pi^2*a^3*(2*pi^2 + 1) (2) >> syms a b c theta;
>>x=a*cos(theta)/c; >>y=b*sin(theta)/c;
>> F=[y*x^3+exp(y),x*y^3+x*exp(y)-2*y]; >>ds=[diff(x,theta);diff(y,theta)]; >>I=int(F*ds,theta,0,pi/2)
I =
-(2*a^4*b - 2*a*b^4 + 15*a*c^4 + 15*b^2*c^3)/(15*c^5)
第12题.
>> syms a b c d e; >> c=[a b c d e]; >> V=vander(c)
V =
[ a^4, a^3, a^2, a, 1] [ b^4, b^3, b^2, b, 1] [ c^4, c^3, c^2, c, 1] [ d^4, d^3, d^2, d, 1] [ e^4, e^3, e^2, e, 1] >> S=simple(det(V)) S =
(a - b)*(a - c)*(a - d)*(b - c)*(a - e)*(b - d)*(b - e)*(c - d)*(c - e)*(d - e) 第13题.
>> A=[-2 0.5 -0.5 0.5; 0 -1.5 0.5 -0.5; 2 0.5 -4.5 0.5; 2 1 -2 -2];
>>[V,J]=jordan(A) V =
0 0.50000000000000 0.50000000000000 -0.25000000000000 0 0 0.50000000000000 1.00000000000000 0.25000000000000 0.50000000000000 0.50000000000000 -0.25000000000000 0.25000000000000 0.50000000000000 1.00000000000000 -0.25000000000000
J =
-4 0 0 0 0 -2 1 0 0 0 -2 1 0 0 0 -2 第14题.
定义函数脚本:
function X=lyapsym(A,B,C)
if nargin==2,C=B;B=A';end
[nr,nc]=size(C);A0=kron(A,eye(nc))+kron(eye(nr),B'); try
C1=C';x0=-inv(A0)*C1(:);X=reshape(x0,nc,nr)'; catch,error('singular matrix found.'),end
程序:
>> A=[3 -6 -4 0 5; 1 4 2 -2 4; -6 3 -6 7 3; -13 10 0 -11 0; 0 4 0 3 4];
>> B=[3 -2 1; -2 -9 2; -2 -1 9];
>> C=[-2 1 -1; 4 1 2; 5 -6 1; 6 -4 -4; -6 6 -3];
>> X=lyap(A,B,C),norm(A*X+B*X+C)
X =
-4.0569 -14.5128 1.5653 0.0356 25.0743 -2.7408 9.4886 25.9323 -4.4177 2.6969 21.6450 -2.8851
7.7229 31.9100 -3.7634 ans =
3.4356e-13 验证:
>> x=lyapsym(sym(A),B,C),norm(A*x+x*B+C) x = [ -434641749950/107136516451, -4664546747350/321409549353, 503105815912/321409549353]
[ 3809507498/107136516451, 8059112319373/321409549353, -880921527508/321409549353]
[ 1016580400173/107136516451, 8334897743767/321409549353, -1419901706449/321409549353]
[ 288938859984/107136516451, 6956912657222/321409549353, -927293592476/321409549353]
[ 827401644798/107136516451, 10256166034813/321409549353, -1209595497577/321409549353]
ans = 0 第15题.
>> syms t;
>> A=[-4.5 0 0.5 -1.5; -0.5 -4 0.5 -0.5; 1.5 1 -2.5 1.5; 0 -1 -1 -3];
>> A0=exp(A*t),A1=sin(A*t),A2=(exp(A*t))*sin(A^2*t*exp(A*t)) A0 =
[ exp(-(9*t)/2), 1, exp(t/2), exp(-(3*t)/2)] [ exp(-t/2), exp(-4*t), exp(t/2), exp(-t/2)] [ exp((3*t)/2), exp(t), exp(-(5*t)/2), exp((3*t)/2)]
[ 1, exp(-t), exp(-t), exp(-3*t)] A1 =
[ -sin((9*t)/2), 0, sin(t/2), -sin((3*t)/2)] [ -sin(t/2), -sin(4*t), sin(t/2), -sin(t/2)]
[ sin((3*t)/2), sin(t), -sin((5*t)/2), sin((3*t)/2)]
[ 0, -sin(t), -sin(t), -sin(3*t)] A2 =
[ sin(5*t + 17*t*exp(-t/2) - 3*t*exp((3*t)/2) + 5*t*exp(-(9*t)/2)) + exp(-(3*t)/2)*sin(8*t + 6*t*exp(-t/2) + 5*t*exp((3*t)/2) - t*exp(-(9*t)/2)) - exp(t/2)*sin(11*t + 8*t*exp(-t/2) - 6*t*exp((3*t)/2) + 11*t*exp(-(9*t)/2)) + exp(-(9*t)/2)*sin(12*t + 2*t*exp(-t/2) - 2*t*exp((3*t)/2) + 21*t*exp(-(9*t)/2)), sin(5*t + 5*t*exp(-t) + 17*t*exp(-4*t) - 3*t*exp(t)) - exp(t/2)*sin(11*t + 11*t*exp(-t) + 8*t*exp(-4*t) - 6*t*exp(t)) + exp(-(9*t)/2)*sin(21*t + 12*t*exp(-t) + 2*t*exp(-4*t) - 2*t*exp(t)) - sin(t - 8*t*exp(-t) - 6*t*exp(-4*t) - 5*t*exp(t))*exp(-(3*t)/2), sin(5*t*exp(-t) + 22*t*exp(t/2) - 3*t*exp(-(5*t)/2)) + exp(-(3*t)/2)*sin(8*t*exp(-t) + 5*t*exp(t/2) + 5*t*exp(-(5*t)/2)) - exp(t/2)*sin(11*t*exp(-t) + 19*t*exp(t/2) - 6*t*exp(-(5*t)/2)) - exp(-(9*t)/2)*sin(2*t*exp(-(5*t)/2) - 23*t*exp(t/2) - 12*t*exp(-t)), sin(5*t*exp(-3*t) + 17*t*exp(-t/2) + 5*t*exp(-(3*t)/2) - 3*t*exp((3*t)/2)) - sin(t*exp(-(3*t)/2) - 6*t*exp(-t/2) - 8*t*exp(-3*t) - 5*t*exp((3*t)/2))*exp(-(3*t)/2) - sin(11*t*exp(-3*t) + 8*t*exp(-t/2) + 11*t*exp(-(3*t)/2) - 6*t*exp((3*t)/2))*exp(t/2) + sin(12*t*exp(-3*t) + 2*t*exp(-t/2) + 21*t*exp(-(3*t)/2) - 2*t*exp((3*t)/2))*exp(-(9*t)/2)]
[ exp(-t/2)*sin(8*t + 6*t*exp(-t/2) + 5*t*exp((3*t)/2) - t*exp(-(9*t)/2)) + exp(-4*t)*sin(5*t + 17*t*exp(-t/2) - 3*t*exp((3*t)/2) + 5*t*exp(-(9*t)/2)) - exp(t/2)*sin(11*t + 8*t*exp(-t/2) - 6*t*exp((3*t)/2) + 11*t*exp(-(9*t)/2)) + exp(-t/2)*sin(12*t + 2*t*exp(-t/2) - 2*t*exp((3*t)/2) + 21*t*exp(-(9*t)/2)), exp(-4*t)*sin(5*t + 5*t*exp(-t) + 17*t*exp(-4*t) - 3*t*exp(t)) - exp(t/2)*sin(11*t + 11*t*exp(-t) + 8*t*exp(-4*t) - 6*t*exp(t)) + exp(-t/2)*sin(21*t + 12*t*exp(-t) + 2*t*exp(-4*t) - 2*t*exp(t)) - sin(t - 8*t*exp(-t) - 6*t*exp(-4*t) - 5*t*exp(t))*exp(-t/2), exp(-t/2)*sin(8*t*exp(-t) + 5*t*exp(t/2) + 5*t*exp(-(5*t)/2)) + exp(-4*t)*sin(5*t*exp(-t) + 22*t*exp(t/2) - 3*t*exp(-(5*t)/2)) - exp(t/2)*sin(11*t*exp(-t) +
19*t*exp(t/2) - 6*t*exp(-(5*t)/2)) - exp(-t/2)*sin(2*t*exp(-(5*t)/2) - 23*t*exp(t/2) - 12*t*exp(-t)), sin(5*t*exp(-3*t) + 17*t*exp(-t/2) + 5*t*exp(-(3*t)/2) - 3*t*exp((3*t)/2))*exp(-4*t) - sin(t*exp(-(3*t)/2) - 6*t*exp(-t/2) - 8*t*exp(-3*t) - 5*t*exp((3*t)/2))*exp(-t/2) - sin(11*t*exp(-3*t) + 8*t*exp(-t/2) + 11*t*exp(-(3*t)/2) - 6*t*exp((3*t)/2))*exp(t/2) + sin(12*t*exp(-3*t) + 2*t*exp(-t/2) + 21*t*exp(-(3*t)/2) - 2*t*exp((3*t)/2))*exp(-t/2)]
[ exp(t)*sin(5*t + 17*t*exp(-t/2) - 3*t*exp((3*t)/2) + 5*t*exp(-(9*t)/2)) + exp((3*t)/2)*sin(8*t + 6*t*exp(-t/2) + 5*t*exp((3*t)/2) - t*exp(-(9*t)/2)) + exp((3*t)/2)*sin(12*t + 2*t*exp(-t/2) - 2*t*exp((3*t)/2) + 21*t*exp(-(9*t)/2)) - exp(-(5*t)/2)*sin(11*t + 8*t*exp(-t/2) - 6*t*exp((3*t)/2) + 11*t*exp(-(9*t)/2)), exp((3*t)/2)*sin(21*t + 12*t*exp(-t) + 2*t*exp(-4*t) - 2*t*exp(t)) - exp(-(5*t)/2)*sin(11*t + 11*t*exp(-t) + 8*t*exp(-4*t) - 6*t*exp(t)) - sin(t - 8*t*exp(-t) - 6*t*exp(-4*t) - 5*t*exp(t))*exp((3*t)/2) + exp(t)*sin(5*t + 5*t*exp(-t) + 17*t*exp(-4*t) - 3*t*exp(t)), exp(t)*sin(5*t*exp(-t) + 22*t*exp(t/2) - 3*t*exp(-(5*t)/2)) + exp((3*t)/2)*sin(8*t*exp(-t) + 5*t*exp(t/2) + 5*t*exp(-(5*t)/2)) - exp((3*t)/2)*sin(2*t*exp(-(5*t)/2) - 23*t*exp(t/2) - 12*t*exp(-t)) - exp(-(5*t)/2)*sin(11*t*exp(-t) + 19*t*exp(t/2) - 6*t*exp(-(5*t)/2)), sin(5*t*exp(-3*t) + 17*t*exp(-t/2) + 5*t*exp(-(3*t)/2) - 3*t*exp((3*t)/2))*exp(t) - sin(t*exp(-(3*t)/2) - 6*t*exp(-t/2) - 8*t*exp(-3*t) -
5*t*exp((3*t)/2))*exp((3*t)/2) + sin(12*t*exp(-3*t) + 2*t*exp(-t/2) + 21*t*exp(-(3*t)/2) - 2*t*exp((3*t)/2))*exp((3*t)/2) - sin(11*t*exp(-3*t) + 8*t*exp(-t/2) + 11*t*exp(-(3*t)/2) - 6*t*exp((3*t)/2))*exp(-(5*t)/2)]
[ sin(12*t + 2*t*exp(-t/2) - 2*t*exp((3*t)/2) + 21*t*exp(-(9*t)/2)) + exp(-3*t)*sin(8*t + 6*t*exp(-t/2) + 5*t*exp((3*t)/2) - t*exp(-(9*t)/2)) + exp(-t)*sin(5*t + 17*t*exp(-t/2) - 3*t*exp((3*t)/2) + 5*t*exp(-(9*t)/2)) - exp(-t)*sin(11*t + 8*t*exp(-t/2) - 6*t*exp((3*t)/2) + 11*t*exp(-(9*t)/2)), sin(21*t + 12*t*exp(-t) + 2*t*exp(-4*t) - 2*t*exp(t)) + exp(-t)*sin(5*t + 5*t*exp(-t) + 17*t*exp(-4*t) - 3*t*exp(t)) - exp(-t)*sin(11*t + 11*t*exp(-t) + 8*t*exp(-4*t) - 6*t*exp(t)) - sin(t - 8*t*exp(-t) - 6*t*exp(-4*t) - 5*t*exp(t))*exp(-3*t), exp(-3*t)*sin(8*t*exp(-t) + 5*t*exp(t/2) + 5*t*exp(-(5*t)/2)) - sin(2*t*exp(-(5*t)/2) - 23*t*exp(t/2) - 12*t*exp(-t)) + exp(-t)*sin(5*t*exp(-t)
+ 22*t*exp(t/2) - 3*t*exp(-(5*t)/2)) - exp(-t)*sin(11*t*exp(-t) + 19*t*exp(t/2) - 6*t*exp(-(5*t)/2)), sin(12*t*exp(-3*t) + 2*t*exp(-t/2) + 21*t*exp(-(3*t)/2) - 2*t*exp((3*t)/2)) - sin(t*exp(-(3*t)/2) - 6*t*exp(-t/2) - 8*t*exp(-3*t) - 5*t*exp((3*t)/2))*exp(-3*t) + sin(5*t*exp(-3*t) + 17*t*exp(-t/2) + 5*t*exp(-(3*t)/2) - 3*t*exp((3*t)/2))*exp(-t) - sin(11*t*exp(-3*t) + 8*t*exp(-t/2) + 11*t*exp(-(3*t)/2) - 6*t*exp((3*t)/2))*exp(-t)]
第二部分
第1题 >> syms a t; >> f=(sin(a*t))/t; >> F1=laplace(f) F1 =
atan(a/s)
>> f2=(t^5)*sin(a*t); >> F2=laplace(f2) F2 =
(720*a*s)/(a^2 + s^2)^4 - (3840*a*s^3)/(a^2 + s^2)^5 + (3840*a*s^5)/(a^2 + s^2)^6
>> f3=(t^8)*cos(a*t); >> F3=simple(laplace(f3)) F3 =
(40320*s*(9*a^8 - 84*a^6*s^2 + 126*a^4*s^4 - 36*a^2*s^6 + s^8))/(a^2 + s^2)^9 第2题 >> syms s a b;
f=1/(sqrt(s^2)*(s^2-a^2)*(s+b));
F=ilaplace(f) F =
-1/2/(a-b)/a^2*exp(-a*t)+1/2/(a+b)/a^2*exp(a*t)-1/a^2/b+1/b/(a^2-b^2)*exp(-b*t)
>> syms s a b; f=sqrt(s-a)-sqrt(s-b); F=ilaplace(f) F =
1/2/t/(t*pi)^(1/2)*(exp(b*t)-exp(a*t))
>> F3=log((s-a)/(s-b)); >> f3=simple(ilaplace(F3)) f3 =
exp(b*t)/t - exp(a*t)/t
第3题 >> syms x;
f=x^2*(3*pi-2*abs(x)); F=fourier(f) f1=ifourier(F) F =
-6*(4+pi^2*dirac(2,w)*w^4)/w^4 f1 =
x^2*(-4*x*heaviside(x)+3*pi+2*x)
>> syms t; f=t^2*(t-2*pi)^2; F=fourier(f) f1=ifourier(F) F =
2*pi*(-4*pi^2*dirac(2,w)+4*i*pi*dirac(3,w)+dirac(4,w)) f1 =
x^2*(2*pi-x)^2 第4题.
>> syms a k z T; >> f1=cos(a*k*T); >> F=ztrans(f1,k,z) F =
(z*(z - cos(T*a)))/(z^2 - 2*cos(T*a)*z + 1)
>> f=iztrans(F,z,k) f =
cos(T*a*k)
>> syms a k z T;
>> f2=(k*T)^2*exp(-a*k*T); >> F=ztrans(f2,k,z) F =
(T^2*z*exp(T*a)*(z*exp(T*a) + 1))/(z*exp(T*a) - 1)^3 >> f=simple(iztrans(F,z,k)) f =
T^2*k^2*exp(-T*a)^k
>> syms a k z T;
>> f3=(a*k*T-1+exp(-a*k*T))/a;
>> F=ztrans(f3,k,z) F =
(T*z)/(z - 1)^2 + z/(a*(z - exp(-T*a))) - z/(a*(z - 1)) >> f=simple(iztrans(F,z,k)) f =
T*k + (exp(-T*a)^k - 1)/a 第5题: >> syms x;
>> S=solve((exp(-(x+2)^2+pi/2))*sin(5*x+2)) S =
-2/5
>> (exp(-(S+2)^2+pi/2))*sin(5*S+2)
ans = 0
>> syms x y;
f=(x^2+y^2+x*y)*exp(-x^2-y^2-x*y);
x1=solve('(x^2+y^2+x*y)*exp(-x^2-y^2-x*y)','x') simple(subs(f,x,x1)) x1 =
(-1/2+1/2*i*3^(1/2))*y (-1/2-1/2*i*3^(1/2))*y ans = 0 0
6. >> syms c x;
>> f=@(c)[int((exp(x)-c*x)^2,x,0,1)]; >> ezplot(f,[-10,10]) >> c=fminsearch(f,0)
c =
3.0000
第7题
function [c,ceq] =opt_con1(x) ceq=[];
c=[x(1)*x(2)-x(1)-x(2)+1.5;-x(1)*x(2)-10]; end
f=@(x)exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1); x0=[1;1]; A=[1 1]; B=[0];
xm=[-10;-10]; xM=[10;10];
ff=optimset;ff.LargeScale='off';
ff.TolFun=1e-30;ff.TolX=1e-15;ff.TolCon=1e-20; Aeq=[]; Beq=[];
[x,f_opt,c,d]=fmincon(f,x0,A,B,Aeq,Beq,xm,xM,@opt_con1,ff) x =
1.1825 -1.7398
f_opt =
3.0608 c =
0 d =
iterations: 51 funcCount: 202 lssteplength: 2
stepsize: 3.6563e-07
algorithm: 'medium-scale: SQP, Quasi-Newton, line-search' firstorderopt: 4.0018e-06
constrviolation: 4.1671e-08 message: [1x142 char]
第8题
f=[-592,-381,-273,-55,-48,-37,-23]; Aeq=[]; Beq=[];
A=[3534,2356,1767,589,528,451,304]; B=[119567];
xm=[0;0;0;0;0;0;0];
xM=[Inf;Inf;Inf;Inf;Inf;Inf;Inf;]; ff=optimset;
ff.Tolx=1e-15;ff.TolFun=1e-20;TolCon=1e-20;ff.LargeScale='off'; [x,f_opt,key,c]=linprog(f,A,B,Aeq,Beq,xm,xM,[0;0;0;0;0;0;0],ff) x =
33.8333 0 0 0.0000 -0.0000 -0.0000 -0.0000
f_opt =
-2.0029e+04
key =
1 c =
iterations: 7
constrviolation: 3.5527e-15
algorithm: 'medium-scale: active-set' cgiterations: []
message: 'Optimization terminated.' firstorderopt: 2.4377e-12 第九题
y=dsolve('D2y-(2-1/x)*Dy+(1-1/x)*y=x^2*exp(-5*x)','x');
y=simple(y) y =
(exp(-5*x)*(30*x - 6*Ei(-6*x)*exp(6*x) + 36*x^2 + 1296*C2*exp(6*x) + 1296*C3*exp(6*x)*log(x) + 11))/1296
y=dsolve('D2y-(2-1/x)*Dy+(1-1/x)*y=x^2*exp(-5*x)','y(1)=pi,y(pi)=1','x'); y=simple(y) y =
(exp(-5*x)*(30*x - 77*exp(6*x - 6) + 1296*pi*exp(6*x - 1) - 6*Ei(-6*x)*exp(6*x) + 36*x^2 + 6*Ei(-6)*exp(6*x) + 11))/1296 - (exp(-5*x)*(11*exp(6*x - 6*pi)*log(x) - 1296*exp(6*x - pi)*log(x) - 77*exp(6*x - 6)*log(x) + 1296*pi*exp(6*x - 1)*log(x) + 36*pi^2*exp(6*x - 6*pi)*log(x) - 6*exp(6*x)*log(x)*Ei(-6*pi) + 6*Ei(-6)*exp(6*x)*log(x) + 30*pi*exp(6*x - 6*pi)*log(x)))/(1296*log(pi))
第10题
syms x t; u=t+1;
y=dsolve(['D2x+2*t*Dx+t^2*x=',char(u)]); y=simple(y) y =
C8*exp(-(t*(t - 2))/2) + C9*exp(-(t*(t + 2))/2) - (2^(1/2)*pi^(1/2)*erf(2^(1/2)*((t*i)/2 - i/2))*exp(-(t - 1)^2/2)*i)/2
(1)syms x y; u=x*exp(-x^2);
y=dsolve(['Dy+2*x*y=',char(u)]); y=simple(y) 结果: y =
(exp(-x^2)*(C11*exp(-2*t*x) + 1))/2
第11题
f=@(t,x)[-x(2)-x(3);x(1)+0.2*x(2);0.2+(x(1)-5.7)*x(3)]; t_final=100;x0=[0;0;0]; [t,x]=ode45(f,[0,t_final],x0); plot3(x(:,1),x(:,2),x(:,3)) figure;
plot3(x(:,1),x(:,2),x(:,3)),view(0,90);
第12题
f=@(t,x)[-x(2)-x(3);x(1)+0.2*x(2);0.5+(x(1)-10)*x(3)]; t_final=100;x0=[0;0;0]; [t,x]=ode45(f,[0,t_final],x0); plot(t,x) figure;
plot3(x(:,1),x(:,2),x(:,3))
f=@(t,x)[x(2);-x(1)-x(3)-9*x(2)^2+x(4)^3+6*x(5)+2*t;x(4);x(5);-x(5)-x(2)-exp(-x(1))-t]; t_final=100;x0=[2;4;-2;7;6]; [t,x]=ode45(f,[0,t_final],x0); plot(x(:,1),x(:,3))
第13题
仿真模型:
[t,x,y]=sim(‘untitled’,[0,10]);plot(t,x) figure;plot(t,y)
T-x T-y
第14题
t=0:0.2:2;
y=t.^2.*exp(-5.*t).*sin(t); t1=0:0.12:2;
y1=interp1(t,y,t1,'spline'); plot(t,y) figure; plot(t1,y1)
正在阅读:
东北大学Matlab实验课作业09-28
浅论我国通货膨胀和失业率相关性分析01-03
浙教版6.5角与角的度量导学案10-23
民主评议党员02-17
种树郭橐驼传测验答案12-25
小学一年级上册体育全册整套教案01-25
数控车工中级理论考试题附答案—-技能考试03-29
三年级下语文教案-妈妈的账单-人教新课标【小学学科网】07-24
伤仲永最新说课稿09-05
80年代的美国经济05-29
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 东北大学
- 实验课
- 作业
- Matlab
- 00266社会心理学一-(复习题大全)真题
- 2012乌市驾校一点通考试小型汽车仿真试题
- 八路彩灯课程设计 - 图文
- 比较新的华为光网络考试试题答案版
- 《中医急诊学》 课程教学大纲(修改)字
- 古代男子的发冠 - 图文
- 超低排放CEMS招标技术规范书
- 高中数学知识点总结
- 日周月隐患排查治理制度
- 房屋共有建筑面积测算与分摊方法探讨
- 英语单词词性总结
- 五年级上学期安全教育计划
- 五年级数学寒假思维训练
- 河南省互联网上网服务营业场所安全管理所有考试习题和答案 - 图文
- 激发学习兴趣 优化音乐教学
- C语言课程设计贪吃蛇源代码
- 台帐三施工组织与设计
- 中国政法大学2009年自主选拔生入围学生名单 - 图文
- 一砖一瓦讲述原汁原味的关中历史(秋林夜雨 作)
- 2016-2021年中国冷轧带钢市场前景展望分析及竞争格局预测研发报告