曲线曲面积分部分难题解答

更新时间:2023-11-29 14:57:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

周世国:曲线曲面积分部分难题解答

曲线、曲面积分部分难题解答

1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)?xyds,l为抛物线y?2x上从原点O(0,0)到点A(2,2)的弧OA;

2?l(ⅱ)?l?x2(ⅲ)?l?y22?ds,l为联结点O(0,0)、A(2,0)和B(0,1)的三角形围线;

2x?yds,l为圆周x2?y2?ax?a?0?;

2(ⅳ)?l?x2?y?z2?ds,l为螺线x?acost,y?asint,z?bt?b?0?的 一段弧

?0?t?2??;

?x2?y2?z2,(ⅴ)?lzds,l为曲线?2上从点O(0,0,0)到A(a,a,a2)的一段弧.

??y?axa?0?1??x?y2,解:(ⅰ)l:?y??0,2?,ds?2??y?y,?dx?1???dy??dy???21?ydy.

2所以

?xyds?l?2120y.y.1?ydy1212tan3322(令y?tant) ?2 ? ? ??arctan20arctan2t.sectdt?arctan2120tan2t.sectd?sect?

2?0?sec2t?1.sectd?sect?

?1?1153sect?sec2?3?5?arctant?|?02?1?12??5?5?5??13?5?3?15?1?3??

?1?12?55155?55???. ??2?315?3152(ⅱ)解:?l?x2

?y2?ds??2OA??AB?2?OB

??xOA2?yds?2???x0?0.1?0dx?2??20xdx?283;

,其中:OA:??y?0,?x?x2,0?x?2.

1??xAB2?yds?????2?2y?0102?y.1???2?dy

22? ?5?5y?8y?4dy??2?535.

1

周世国:曲线曲面积分部分难题解答

其中:AB:??y?y,?x?2?2y,2,0?y?1.

??xBO2?yds????0012?y2?.1?0dy?2?20ydy?213.,

?x?0,其中:BO:?,0?y?1.

y?y?所以

I??OA??AB??OB?535?3.

(ⅲ)

aa?x??cost,??22解法一:l:?,0?t?2?.

?y?asint?2?x??t??y??t?dt?22ds?a?a??a???sint???cost?dt?dt.

2?2??2?2?2?a2a2?1?cost??sin?44?222所以,?x?yds?l22?0?at?dt ?2 ?a24a?22?02?1?cost?dt?a24?2?02.2sin2t2dt

?2?2?0sint2dt?a2?2?0sint?t?t?2?2?2d???a??cos?|?2a. 2?2?2?0??解法二:化l为极坐标表示:l:r????acos?,????,?. ?22?则

2?x?r???cos??acos?,??,????. l:?2??acos?.sin?2?y?r???sin??? ds?22r????r????dt?22?acos??22???asin??dt?ad?.

2所以,?x?yds?l????acos2?2?2????acos?sin??ad?

???2? ?a?2??2acos?d??2a222?20cos?d??2asin?|2?2a.

220 2

周世国:曲线曲面积分部分难题解答

(ⅳ) dsl?x??t??y??t??z??t?dt?222??asint?222??acost??bdt?22a?bdt

22 ??x2?y2?z2?ds? ? ?a?b2?322???acost?2?022??asint???bt?.a?bdt

2???a022?2?btdt?22?2?2b3?2?a?b?at?t?|

03??22?3a2?4b?2?a?b.

222.(P201,第2题)设有某种物质分布在椭圆l:求它的总质量.

解:不妨假设a?b.

M?xa22?yb22其密度??x,y??y.?1上,

?lyds?4?ydsl1,其中l1;?2?x?acost,??t??0,?2?y?bsint,??. ?2 ds?所以

x??t??y??t?dt?2??asint?2??bcost?dt?asin22t?bcostdt.

22?M?4?yds?4?2bsintasinl1022t?bcostdt

22 ?4?2bsinta2??a2?b2?cos2tdt

0? ??4b?2a2??a2?b2?cos2td?cost?

0? ??4b?01a?a?budu?4b??222?22?210a?a?budu

2?22?2 ?4ba?b?22a220a?b?udu2(公式)

a222?a2?2222?a?b.arcsin ?4ba?b.?2????2a22?.arcsin ?4ba?b.?2a2?b2??ua222u?a?b2a?b??u?1? |?0??2aa?ba22222???a?b2??1?? ??? 3

周世国:曲线曲面积分部分难题解答

? ?2b.???a22.arcsin2a?ba22a?b??b?. ??3.(P202,第3题)设曲线l的长度为L,而函数f在包含l的某个区域内连续.证明:

?f?P?dsl?L.maxf?P?.

P?l证明:由第一型曲线积分的定义

n?f?P?dsl?limd?0?f?P?.?s

iii?1?f?P?dsln?limd?0?f?P?.?s

iii?1n ?limd?0?f?P?.?s

iii?1 ?limd?0?f?P?.?sii?1ni?limd?0?maxf?P?.?si?1p?lni

?L.maxf?P?.

P?l4.(P202,第4题)从原点O?0,0?到点A?1,2?沿下列不同路径分别计算第二型曲线积分

?xdy?ydx.

?OA(1).OA为直线段;

(2).OA为抛物线y?2x2上的弧;

(3).OA为从点O?0,0?经点B?1,0?到点A?1,2?的折线OBA. 解: (1) OA:?

???????y?2x,?x?x?,x:0~1.

1?OAxdy?ydx???x.2?2x?dx0?0.

?y?2x2,,x:0~1. (2)OA:?x?x?

4

周世国:曲线曲面积分部分难题解答

1212

??OAxdy?ydx???x.4x?2x2?30dx?3x|0?3.

(3)??xdy?ydx?OA???2?2.OB??0BA

其中,OB:?y?0,?,x:0~1.?x?x.

?1OBxdy?ydx??0?x.0?0?dx?0;

其中,BA:?1,??x?y?y.,y:0~2. ?2BAxdy?ydx??0?1?y.0?dy?2.

5.(P202,第5题)计算曲线积分 ?lydx?xdy.

(1).l为从点?a,0?点??a,0?的上半圆周y?a2?x2?a?0?;

(2). l为从点?a,0?点??a,0?的直线段?a?0?; (3). l为逆时针方向的圆周x2?y2?a2. 解: (1)

l:?x?acost,??y?asint,t:0~?.

?lydx?xdy???0??asint??.?asint???acost??.acost??dt ?2 ?a2?0cos2tdt?a2sin2t|?0?0.

(2)l:?y?0,??x?x,x:a~?a.

?lydx?xdy??a?a?0?x.0?dx?0.

(3)l:??x?acost,?y?asint,t:0~2?.

?2?lydx?xdy??0??asint??.?asint???acost??.acost??dt 2?2?a2?0cos2tdt?a2sin2t|2?0?0.

5

本文来源:https://www.bwwdw.com/article/0gjt.html

Top