2014年浙江省嘉兴市中考三模考试数学试题2014.5.28

更新时间:2023-07-26 13:49:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2014年浙江省中考三模考试数学试题2014.5.28

考生须知:

1.全卷满分150分,考试时间120分钟.试题卷共6页,有三大题,共24小题. 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效. b4ac b2

,). 参考公式:二次函数y ax bx c(a 0)图象的顶点坐标是( 2a4a

2

温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”.

卷Ⅰ(选择题)

一、选择题(本题有10小题,每题4分,共40分.请选出各题中唯一的正确选项,不选、

多选、错选,均不得分)

1.实数x,y在数轴上的位置如图所示,则( ▲ )

A.x y 0 C.x y 0

B.y x 0 D.y x 0

x

(第1题)

y

2.若x ( 2) 3,则x的倒数是( ▲ )

A.

1

6

B.

1 6

C. 6 D.6

3.下列运算正确的是( ▲ )

A. 2(a b) 2a b C. 2(a b) 2a 2b

B. 2(a b) 2a b D. 2(a b) 2a 2b

4.已知数据:2, 1,3,5,6,5,则这组数据的众数和极差分别是( ▲ )

A.5和7

B.6和7

C.5和3 D.6和3

5.判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形,结果是

( ▲ ) A.①②都正确

B.①②都错误

D.①错误,②正确

C.①正确,②错误 6.解方程

84 x2

2

的结果是( ▲ ) 2 x

B.x 2

C.x 4

D.无解

A.x 2

7.沪杭高速铁路已开工建设,某校研究性学习以此为课题,在研究列车的行驶速度时,得

到一个数学问题.如图,若v是关于t的函数,图象为折线O A B C,其中A(t1,350),B(t2,350),C(

17

,0),四边形OABC的面积为70,则t2 t1 ( ▲ ) 80

B.3

16

A.1

5C.7

80

D.31

160

8.已知a 0,在同一直角坐标系中,函数y ax与y ax2的图象有可能是( ▲ )

A. 9.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB//OP.若阴影部分的面积为9 ,则弦AB的长为( ▲ )

A.3 C.6

B.4 D.9

(第9题)

10.如图,等腰△ABC中,底边BC a, A 36 , ABC的平分线交AC于D, BCD的

5 1

平分线交BD于E,设k ,则DE ( ▲ )

2

A.k2a C.

B.k3a D.

D

ak

2

ak

3

B C (第10题)

卷Ⅱ(非选择题)

二、填空题(本题有6小题,每题5分,共30分)

11.用四舍五入法,精确到0.1,对5.649取近似值的结果是 12.当x 2时,代数式x2 3x 1的值是 13.因式分解:(x y)2 3(x y)

14.如图,AD∥BC,BD平分∠ABC,且 A 110 ,则 D ▲ .

15.一个几何体的三视图如图所示(其中标注的a,b,c为相应的边长),则这个几何体的

a

体积是 ▲ .

c

b

(第15题)

16.如图,在直角坐标系中,已知点A( 3,0),B(0,4),对△OAB连续作旋转变换,依次得

到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为 ▲ .

三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12

分,第24题14分,共80分)

2009

( 1) 2. 17.计算:

18.化简:(a 2b)(a 2b)

19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,

∠C的大小.

20.某工厂用A、B、C三台机器加工生产一种产品.对2009年第一季度的生产情况进行

1

b(a 8b). 2

统计,图1是三台机器的产量统计图,图2是三台机器产量的比例分布图.(图中有部分信息未给出)

图1

图2

(第20题)

(1)利用图1信息,写出B机器的产量,并估计A机器的产量; (2)综合图1和图2信息,求C机器的产量.

21.如图,在平行四边形ABCD中,AE BC于E,AF CD于F,BD与AE、AF分别相

交于G、H.

(1)求证:△ABE∽△ADF;

(2)若AG AH,求证:四边形ABCD是菱形.

B

D

(第21题)

6

22.如图,曲线C是函数y 在第一象限内的图象,抛物线是函数y x2 2x 4的图

x

,2,)在曲线C上,且x,y都是整数. 象.点Pn(x,y)(n 1

(1)求出所有的点Pn(x,y);

(2)在Pn中任取两点作直线,求所有不同直线的条数;

(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.

23.如图,已知一次函数y kx b的图象经过

A( 2,

交y轴于点D,

(1)求该一次函数的解析式; (2)求tan OCD的值; (3)求证: AOB 135 .

24.如图,已知A、B是线段MN上的两点,MN 4,MA 1,MB 1.以A为中心顺时

针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB x. (1)求x的取值范围;

(2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积?

(第24题)

2014年浙江省中考三模考试数学试题2014.5.28

数学参考答案与评分标准

一、选择题(本题有10小题,每题4分,共40分) 1.B 6.D

2.A 7.B

3.D 8.C

4.A 9.C

5.C 10.A

二、填空题(本题有6小题,每题5分,共30分) 11.5.6

12.5 14.35 16.(36,0)

13.(x y)(x y 3) 15.abc

三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题

12

分,第24题14分,共80分)

2009

( 1) 2 17.

22 1 2 ·········································································································· 6分 2 1 ·········································································································· 8分

18.(a 2b)(a 2b)

1

b(a 8b) 2

a2 4b2 a2

1

·························································································· 6分 ab 4b2 ·

2

1

············································································································· 8分 ab ·

2

19.设 A x(度),则 B x 20, C 2x.

根据四边形内角和定理得,x (x 20) 2x 60 360. ········································ 4分 解得,x 70.

∴ A 70 , B 90 , C 140 . ····································································· 8分

20.(1)B机器的产量为150件, ·················································································· 2分

A机器的产量约为210件. ·············································································· 4分

(2)C机器产量的百分比为40%. ················································································ 6分

设C机器的产量为x, 由

150x

,得x 240,即C机器的产量为240件. ···································· 8分

25%40%

21.(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°. ·············································· 2分 ∵四边形ABCD是平行四边形,∴∠ABE=∠ADF. ···················································· 4分 ∴△ABE∽△ADF ···································································································· 5分 (2)∵△ABE∽△ADF, ∴∠BAG=∠DAH.

∵AG=AH,∴∠AGH=∠AHG, 从而∠AGB=∠AHD.

B

(第21题)

D

∴△ABG≌△ADH. ··········································································································· 8分

∴AB AD.

∵四边形ABCD是平行四边形,

∴四边形ABCD是菱形. ·················································································· 10分 22.(1)∵x,y都是正整数,且y

6

2,3,6. ,∴x 1,

x

∴P············································································· 4分 ,6),P2(2,3),P3(3,2),P4(61), ·1(1(2)从P1,P2,P3,P4中任取两点作直线为: P1P2,P1P3,P1P4,P2P3,P2P4,P3P4.

∴不同的直线共有6条. ··································································································· 9分 (3)∵只有直线P2P4,P3P4与抛物线有公共点,

∴从(2)的所有直线中任取一条直线与抛物线有公共点的概率是

k 1 2k b

23.(1)由 ,解得

3 k b b

21

···················· 12分 ·

63

4

3,所以y 4x 5 ·············································· 4分 5333

0),D(0). (2)C( ,

在Rt△OCD中,OD ∴tan OCD

5453

55,OC , 34

OD4

··································································································· 8分 .

OC3

1), (3)取点A关于原点的对称点E(2,

则问题转化为求证 BOE 45 . 由勾股定理可得,

OE 5,BE 5,OB ,

∵OB2 OE2 BE2, ∴△EOB是等腰直角三角形. ∴ BOE 45 .

∴ AOB 135°. ·············································································································· 12分

24.(1)在△ABC中,∵AC 1,AB x,BC 3 x.

1 x 3 x∴ ,解得1 x 2. ······················································································ 4分

1 3 x x

(2)①若AC为斜边,则1 x2 (3 x)2,即x2 3x 4 0,无解. ②若AB为斜边,则x2 (3 x)2 1,解得x ③若BC为斜边,则(3 x)2 1 x2,解得x ∴x

5

,满足1 x 2. 3

4

,满足1 x 2. 3

54

或x . ·············································································································· 9分 33

(3)在△ABC中,作CD AB于D, 设CD h,△ABC的面积为S,则S ①若点D在线段AB上, 则 h2 (3 x)2 h2 x.

1

xh. 2

(第24题-1)

∴(3 x)2 h2 x2 2x h2 1 h2,即x h2 3x 4. ∴x2(1 h2) 9x2 24x 16,即x2h2 8x2 24x 16. ∴S2

412231

. ································· 11分 xh 2x2 6x 4 2(x )2 (≤x 2)

4223

当x

4213

时(满足≤x 2),S2取最大值,从而S取最大值. ························ 13分

2223

②若点D在线段MA上, 则(3 x)2 h2 h2 x.

1

同理可得,S x2h2 2x2 6x 4

4

2

431

, 2(x )2 (1 x≤)

223

易知此时S

2

. 2

(第24题-2)

综合①②得,△ABC的最大面积为

2. ··········································································· 14分 2

本文来源:https://www.bwwdw.com/article/0g4m.html

Top