2014年浙江省嘉兴市中考三模考试数学试题2014.5.28
更新时间:2023-07-26 13:49:01 阅读量: 实用文档 文档下载
2014年浙江省中考三模考试数学试题2014.5.28
考生须知:
1.全卷满分150分,考试时间120分钟.试题卷共6页,有三大题,共24小题. 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效. b4ac b2
,). 参考公式:二次函数y ax bx c(a 0)图象的顶点坐标是( 2a4a
2
温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”.
卷Ⅰ(选择题)
一、选择题(本题有10小题,每题4分,共40分.请选出各题中唯一的正确选项,不选、
多选、错选,均不得分)
1.实数x,y在数轴上的位置如图所示,则( ▲ )
A.x y 0 C.x y 0
B.y x 0 D.y x 0
x
(第1题)
y
2.若x ( 2) 3,则x的倒数是( ▲ )
A.
1
6
B.
1 6
C. 6 D.6
3.下列运算正确的是( ▲ )
A. 2(a b) 2a b C. 2(a b) 2a 2b
B. 2(a b) 2a b D. 2(a b) 2a 2b
4.已知数据:2, 1,3,5,6,5,则这组数据的众数和极差分别是( ▲ )
A.5和7
B.6和7
C.5和3 D.6和3
5.判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形,结果是
( ▲ ) A.①②都正确
B.①②都错误
D.①错误,②正确
C.①正确,②错误 6.解方程
84 x2
2
的结果是( ▲ ) 2 x
B.x 2
C.x 4
D.无解
A.x 2
7.沪杭高速铁路已开工建设,某校研究性学习以此为课题,在研究列车的行驶速度时,得
到一个数学问题.如图,若v是关于t的函数,图象为折线O A B C,其中A(t1,350),B(t2,350),C(
17
,0),四边形OABC的面积为70,则t2 t1 ( ▲ ) 80
B.3
16
A.1
5C.7
80
D.31
160
8.已知a 0,在同一直角坐标系中,函数y ax与y ax2的图象有可能是( ▲ )
A. 9.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB//OP.若阴影部分的面积为9 ,则弦AB的长为( ▲ )
A.3 C.6
B.4 D.9
(第9题)
10.如图,等腰△ABC中,底边BC a, A 36 , ABC的平分线交AC于D, BCD的
5 1
平分线交BD于E,设k ,则DE ( ▲ )
2
A.k2a C.
B.k3a D.
D
ak
2
ak
3
B C (第10题)
卷Ⅱ(非选择题)
二、填空题(本题有6小题,每题5分,共30分)
11.用四舍五入法,精确到0.1,对5.649取近似值的结果是 12.当x 2时,代数式x2 3x 1的值是 13.因式分解:(x y)2 3(x y)
14.如图,AD∥BC,BD平分∠ABC,且 A 110 ,则 D ▲ .
15.一个几何体的三视图如图所示(其中标注的a,b,c为相应的边长),则这个几何体的
a
体积是 ▲ .
c
b
(第15题)
16.如图,在直角坐标系中,已知点A( 3,0),B(0,4),对△OAB连续作旋转变换,依次得
到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为 ▲ .
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12
分,第24题14分,共80分)
2009
( 1) 2. 17.计算:
18.化简:(a 2b)(a 2b)
19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,
∠C的大小.
20.某工厂用A、B、C三台机器加工生产一种产品.对2009年第一季度的生产情况进行
1
b(a 8b). 2
统计,图1是三台机器的产量统计图,图2是三台机器产量的比例分布图.(图中有部分信息未给出)
图1
图2
(第20题)
(1)利用图1信息,写出B机器的产量,并估计A机器的产量; (2)综合图1和图2信息,求C机器的产量.
21.如图,在平行四边形ABCD中,AE BC于E,AF CD于F,BD与AE、AF分别相
交于G、H.
(1)求证:△ABE∽△ADF;
(2)若AG AH,求证:四边形ABCD是菱形.
B
D
(第21题)
6
22.如图,曲线C是函数y 在第一象限内的图象,抛物线是函数y x2 2x 4的图
x
,2,)在曲线C上,且x,y都是整数. 象.点Pn(x,y)(n 1
(1)求出所有的点Pn(x,y);
(2)在Pn中任取两点作直线,求所有不同直线的条数;
(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.
23.如图,已知一次函数y kx b的图象经过
A( 2,
交y轴于点D,
(1)求该一次函数的解析式; (2)求tan OCD的值; (3)求证: AOB 135 .
24.如图,已知A、B是线段MN上的两点,MN 4,MA 1,MB 1.以A为中心顺时
针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB x. (1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积?
(第24题)
2014年浙江省中考三模考试数学试题2014.5.28
数学参考答案与评分标准
一、选择题(本题有10小题,每题4分,共40分) 1.B 6.D
2.A 7.B
3.D 8.C
4.A 9.C
5.C 10.A
二、填空题(本题有6小题,每题5分,共30分) 11.5.6
12.5 14.35 16.(36,0)
13.(x y)(x y 3) 15.abc
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题
12
分,第24题14分,共80分)
2009
( 1) 2 17.
22 1 2 ·········································································································· 6分 2 1 ·········································································································· 8分
18.(a 2b)(a 2b)
1
b(a 8b) 2
a2 4b2 a2
1
·························································································· 6分 ab 4b2 ·
2
1
············································································································· 8分 ab ·
2
19.设 A x(度),则 B x 20, C 2x.
根据四边形内角和定理得,x (x 20) 2x 60 360. ········································ 4分 解得,x 70.
∴ A 70 , B 90 , C 140 . ····································································· 8分
20.(1)B机器的产量为150件, ·················································································· 2分
A机器的产量约为210件. ·············································································· 4分
(2)C机器产量的百分比为40%. ················································································ 6分
设C机器的产量为x, 由
150x
,得x 240,即C机器的产量为240件. ···································· 8分
25%40%
21.(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°. ·············································· 2分 ∵四边形ABCD是平行四边形,∴∠ABE=∠ADF. ···················································· 4分 ∴△ABE∽△ADF ···································································································· 5分 (2)∵△ABE∽△ADF, ∴∠BAG=∠DAH.
∵AG=AH,∴∠AGH=∠AHG, 从而∠AGB=∠AHD.
B
(第21题)
D
∴△ABG≌△ADH. ··········································································································· 8分
∴AB AD.
∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形. ·················································································· 10分 22.(1)∵x,y都是正整数,且y
6
2,3,6. ,∴x 1,
x
∴P············································································· 4分 ,6),P2(2,3),P3(3,2),P4(61), ·1(1(2)从P1,P2,P3,P4中任取两点作直线为: P1P2,P1P3,P1P4,P2P3,P2P4,P3P4.
∴不同的直线共有6条. ··································································································· 9分 (3)∵只有直线P2P4,P3P4与抛物线有公共点,
∴从(2)的所有直线中任取一条直线与抛物线有公共点的概率是
k 1 2k b
23.(1)由 ,解得
3 k b b
21
···················· 12分 ·
63
4
3,所以y 4x 5 ·············································· 4分 5333
0),D(0). (2)C( ,
在Rt△OCD中,OD ∴tan OCD
5453
55,OC , 34
OD4
··································································································· 8分 .
OC3
1), (3)取点A关于原点的对称点E(2,
则问题转化为求证 BOE 45 . 由勾股定理可得,
OE 5,BE 5,OB ,
∵OB2 OE2 BE2, ∴△EOB是等腰直角三角形. ∴ BOE 45 .
∴ AOB 135°. ·············································································································· 12分
24.(1)在△ABC中,∵AC 1,AB x,BC 3 x.
1 x 3 x∴ ,解得1 x 2. ······················································································ 4分
1 3 x x
(2)①若AC为斜边,则1 x2 (3 x)2,即x2 3x 4 0,无解. ②若AB为斜边,则x2 (3 x)2 1,解得x ③若BC为斜边,则(3 x)2 1 x2,解得x ∴x
5
,满足1 x 2. 3
4
,满足1 x 2. 3
54
或x . ·············································································································· 9分 33
(3)在△ABC中,作CD AB于D, 设CD h,△ABC的面积为S,则S ①若点D在线段AB上, 则 h2 (3 x)2 h2 x.
1
xh. 2
(第24题-1)
∴(3 x)2 h2 x2 2x h2 1 h2,即x h2 3x 4. ∴x2(1 h2) 9x2 24x 16,即x2h2 8x2 24x 16. ∴S2
412231
. ································· 11分 xh 2x2 6x 4 2(x )2 (≤x 2)
4223
当x
4213
时(满足≤x 2),S2取最大值,从而S取最大值. ························ 13分
2223
②若点D在线段MA上, 则(3 x)2 h2 h2 x.
1
同理可得,S x2h2 2x2 6x 4
4
2
431
, 2(x )2 (1 x≤)
223
易知此时S
2
. 2
(第24题-2)
综合①②得,△ABC的最大面积为
2. ··········································································· 14分 2
正在阅读:
2014年浙江省嘉兴市中考三模考试数学试题2014.5.2807-26
大学物理上学习指导作业参考答案(1)01-11
护理洗头车项目可行性研究报告12-15
2014年“创青春”全国大学生创业大赛金奖项目展示11-04
东堂 - 图文03-18
近代有机分析实验讲义06-01
数据有格式输入输出05-22
八年级湖南地方文化常识教案03-19
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 嘉兴市
- 数学试题
- 浙江省
- 中考
- 考试
- 2014.5
- 2014
- 28