2017年军考数学真题《历年军考真题系列》

更新时间:2023-08-26 06:51:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

德方军考编辑《历年军考真题系列》之2017年军考数学真题。

1 / 5 历年军考真题系列之

2017年军队院校招生士兵高中军考数学真题 关键词:军考真题,德方军考,军考试题,军考资料,士兵高中,军考数学

一、单项选择(每小题4分,共36分).

1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( )

A .(﹣1,1)

B .(0,1)

C .(﹣1,+∞)

D .(0,+∞)

2. 已知函数f (x )=a x +log a x (a >0且a≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( )

A .

B .

C . 2

D .4

3. 设a b 、是向量,则||=||a b 是|+|=|-|a b a b 的( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件 4.已知4

21353=2,4,25a b c ==,则( )

A .b<a<c

B .a<b<c

C .b<c<a

D . c<a<b

5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )

A .

B .

C .

D .

6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( )

A .2

B .

C .﹣2

D .﹣

7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )

德方军考编辑《历年军考真题系列》之2017年军考数学真题。

2 / 5 A . B . C .

D .1

8. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距

离为1,则球O 的表面积为( )

A .12π

B .16π

C .36π

D .20π

9. 已知2017ln f x x x =+()()

,0'2018f x =(),则0x =( ) A. 2e B.1

C. ln 2

D. e 二、填空题(每小题4分,共32分)

10. 设向量,,且,则m= . 11. 设tanα,tanβ是方程x 2﹣3x+2=0的两个根,则tan (α+β)的值为 .

12. 已知A 、B 为双曲线E 的左右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,

则E 的离心率为 .

13. 已知函数f (x )=,则f (f ())= .

14. 在的展开式中x 7的项的系数是 .

15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,

如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

16. 在极坐标系中,直线ρcosθ﹣ρsinθ﹣1=0与圆ρ=2cosθ交于A ,B 两点,则|AB|=_______.

17. 已知n 为正偶数,用数学归纳法证明

时,若已假设n=k (k≥2,k 为偶数)

时命题为真,则还需要用归纳假设再证n= 时等式成立.

三、解答题(共7小题,共82分,解答题应写出文字说明、演算步骤或证明过程)

18.(本小题8分)对任意实数x ,不等式﹣9<22361

x px x x +--+<6恒成立,求实数p 的取值范围。

德方军考编辑《历年军考真题系列》之2017年军考数学真题。

19.(本小题12分)

20、(12分)已知数列{a n}中,a1=1,二次函数f(x)=a n?x2+(2﹣n﹣a n+1)?x的对称轴为x=.

(1)试证明{2n a n}是等差数列,并求{a n}通项公式;

(2)设{a n}的前n项和为S n,试求使得S n<3成立的n值,并说明理由.

21、(10分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:

方案甲:逐个化验,直到能确定患病动物为止.

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.

3 / 5

德方军考编辑《历年军考真题系列》之2017年军考数学真题。

(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;

(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.

22、(12分)已知函数f(x)=ax+bsinx,当时,f(x)取得极小值.

(1)求a,b的值;

(2)设直线l:y=g(x),曲线S:y=f(x).若直线l与曲线S同时满足下列两个条件:

①直线l与曲线S相切且至少有两个切点;

②对任意x∈R都有g(x)≥f(x).则称直线l为曲线S的“上夹线”.试证明:直线l:y=x+2为曲线S:y=ax+bsinx“上夹线”.

4 / 5

德方军考编辑《历年军考真题系列》之2017年军考数学真题。

23、(14分)已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.

(1)当切线PA的长度为时,求点P的坐标;

(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.

(3)求线段AB长度的最小值.

24、(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.

(Ⅰ)求证:MN∥平面ABCD

(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;

(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E 的长.

5 / 5

本文来源:https://www.bwwdw.com/article/0f4i.html

Top