复变函数与积分变换(修订版-复旦大学)课后的习题答案
更新时间:2024-01-25 08:13:01 阅读量: 教育文库 文档下载
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
习题 七
1.证明:如果f(t)满足傅里叶变换的条件,当f(t)为奇函数时,则有
f(t)?解:
a(?)???2π2???0f(t)?cos?tdt?21?π?2π?2π?10t?cos?tdt?22π???10?cos?tdt???0b(?)?sin?td?
2π?π2π?210t?cos?tdt?2?1010td(sin?t)2其中b(?)?当f(t)?????t?sin?t10
?0f?t??sin?tdt
?sin?t?2tdtf(t)为偶函数时,则有
???2sin?4??2π???2sin?π?2sin???42?10t?d(cos?t)10???0a(w)?cos?td?
2?t?cos?t????4cos???10cos?tdt???其中a(?)?证明: 因为f(t)?????0f(t)?cos?tdt
????2?4sin???3?sint,t?6π3.计算函数f(t)??的傅里叶变换. ?2π?1????G(?)ei?td?其中G(?)为f(t)
??0,t?6π解:
F的傅里叶变换
G(?)???????????f(t)e?i?tdt???????f?(?)??????f(t)?e?i?tdt??6π?6πsint?e?i?tdtf(t)?(cos?t?isin?t)dt ??????6π?6πsint?(cos?t?isin?t)dt6π0?f(t)?cos?tdt?i?f(t)?sin?tdt
sint?sin?tdt??2i??当f(t)为奇函数时,f(t)?cos?t为奇函数,从而
isin6π?π(1??)2?????f(t)?cos?tdt?0
4.求下列函数的傅里叶变换 (1)f(t)?e解:
F?f?(?)???t
f(t)?sin?t为偶函数,从而
?????f(t)?sin?tdt?2???0??0f(t)?sin?tdt.
?????f(t)e?i?tdt??????e?|t|?e?i?tdt??????e?(|t|?i?t)dt
故G(?)??2i?f(t)?sin?tdt. 有
?0??et(1?i?)dt????0e?t(1?i?)dt?21??2G(??)??G(?)为奇数。
f(t)?12?(2)f(t)?t?eG(?)?(cos?t?isin?t)d??t2
?????G(?)?ei?td??12???? 解:因为
F[e?t2??=
12π?????G(?)?isin?td??iπ???0G(?)?sin?td?
]?π?e??24.而(e?t2)?e/?t2?(?2t)??2t?e?t2.
所以根据傅里叶变换的微分性质可得G(?)?Ft(?esinπt1?t2所以,当f(t)为奇函数时,有
f(t)????0b(?)?sin?td?.其中b(?)=2π???0?t2f(t)?sin?tdt.?)π?2i??2?4e
同理,当f(t)为偶函数时,有 f(t)?a(?)?(3)f(t)?解:
???0a(?)?cos?td?.其中
??0?π2f(t)?cos?tdt
2??t,2.在上一题中,设f(t)????0,t?1t?1.计算a(?)的
值.
1 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
G(?)?F(f)(?)???????sinπt1?t2?e?i?tdtL/2GL(?)??????sinπt1?t????2??L/2F(t)e?i?tdt.
?(cos?t?isin?t)dt?12[cos(π??)t?cos(π??)t]1?t22
dt证明当L??时,有
p.v.12π???i??i?sinπt?sin?t1?t1?t22dt??2i???0??0??0cos(π+?)tdt?i?cos(π-?)t1?tdt(利用留数定理)?G??L(?)ei?td??F(t)
?i??sin?,当|?|?π??2?0,当|?|?π.? 对所有的实数t成立. (书上有推理过程) 6.求符号函数 sgnt?变换.
??1,??|t|?1,tt?0t?0(4)f(t)?解:
G(?)??2???011?t11?t444
的傅里叶
?????e?i?tdt??????cos?t1?t4dt?i?????sin?t1?t4解:
dtcos?t1?tdt??????cos?t1?t4因s为Fu(tdt1?(?)π??)(?i?)把.函数
令R(z)=2211?z4gt与nu(t)(作比)较.
,则R(z)在上半平面有两个一级极
不难看出 sgn(t)?u(t)?u(?t).
22(?1?i).
2222点
????(1?i),故:
F[sgn(t)]?F(u(t))?F(u(?t))?1iπ?π??(?)?[1i(??)?π??(??)]?R(t)?edt?2πi?Res[R(z)?e,i?ti?z(1?i)]?2πi?Res[R(z)?e,i?z(?1?i)]
?|?|2
2i?故.
cos?t1?t4?π??(?)??(??)??2i??????dt?Re[?????ei?t41?tdt]?122e?|?|/2(cos|?|2?sin)
7.已知函数f(t)的傅里叶变换
(5) f(t)?解: G(?)??t1?t4
F(?)=π??(???0)??(???0)?,求f(t)
解:
?t????t1?t4?e?i?tdt????f(t)?F(F(?))=-1?2π????????1????π???(???0)??(???0)?ed?i?t?i?t?????1?t????4?cos?tdt?i?4t?sin?t1?t4dt
而F(cos?0t)=??cos?0t?eei?0tdt?e?i?0t??i?t?sin?t1?tdtz1?z4??e2?i?0tdt
?π[?(???0)??(???0)]所以同(4).利用留数在积分中的应用,令R(z)=则
?i???????
f(t)?cos?0t8.设函数f(t)的傅里叶变换F(?),a为一常数. 证明
t?sin?t1?t?e?|?|/4dt?(?i)Im(?????t?ei?t41?tdt)i22?sin?2. ?[f(at)](?)???F?a?a1??. ?5.设函数F(t)是解析函数,而且在带形区域Im(t)??内有界.定义函数GL(?)为
解:F[f(at)](?)??????f(at)?e?i?tdt?1?a????f(at)?e?i?td(at)
2 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
当a>0时,令u=at.则 F[f(at)](?)?1a当t?y?o时,若t?0,则f?y??0,故
u?i?a?????f(u)?edu????F?? a?a?11aF(f*g?t?=0.
当a<0时,令u=at,则F[f(at)](?)??故原命题成立.
9.设F????F?f????;证明
?a). 若0?t?f*g?t???2t,0?y?t,则 f(y)g?t?y?dy??0?t0e?y?sin?t?y?dy
若t?F?????F?2,0?t?y??2.?t??2?y?t.
?f??t?????.
证明:
F?f??t????????则f*g?t???tt??2e?y?sin?t?y?dy
t?00?t?t????????????????f??t??ef?u??ef?t??e?i?tdt???du?????f?u??edu??i?u
du??i????u?????f?u??e??i(??)?u???i?????t?dt?F????.?0,?1故f*g?????sint?cost?e?t?,t?2?1??e?t.1?e2?2?2
???210.设F????F?f????,证明:
F12.设u?t?为单位阶跃函数,求下列函数的傅里叶变换.
?1?f?t??e?at?f?t??cos?0t?????1212??F????0??F????0???以及
Fsin?0t?u?t?
?f?t??sin?0t???????F????0??F????0???.
解:G????F?f??????????????e?at?sin?0t?u?t??edt?i?t?i?tdt证明:
?eF?f?t??cos?0t??F?f?t???i?0t+e2?i?0t
????i?0t????0??0ee?at?sin?0t?e?ei?0t?i?t?at?e2i?i?0ti?t1??e0??F?f?t??2??2??e??F?f?t????2???????edt?dt??012i?12??F????0??F????0??????0e???a?i????0???t12i?e???a?i????0???tdt同理:
F?0?a?i????022
?i?t?i?t?e0?e0?f?t??sin?0t??F?f?t???2i??
???F??f?t??e2i12i1i?0t?i?0t????F??f?t??e????F????0??F????0???11.设
?0,f?t????t?e,t?0t?0??sint,g?t????0,?0?t?其他π2
计算f*g?t?. 解:f*g?t???????f(y)g?t?y?dy
3 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
习题八
1.求下列函数的拉普拉斯变换.
(1)f(t)?sint?cost,
(3)f(t)?sint 2(4)f(t)?t(5)f(t)?sinhbt, 解: (1)f(t)?sint?cost?sin2t
2
L(f(t))?12L(sin2t)?1?22L(f(t))?????0f(t)?edt??st???st???0cost??(t)?edt??sint?u(t)?edt0?st?st???st?????cost??(t)?edt??sint?edt0?stt?0(2)f(t)?e?4t,
?cost?e?1s?12?1?1s?12?s22s?12
4.求图8.5所表示的周期函数的拉普拉斯变换
12s?4s?4
11(2)L(f(t))?L(e?4t)?
2s?4
1?cos2t2(3)f(t)?sint?2
?12
解:
L(fT(t))?T0?st
L(f(t))?L(1?cos2t211122)?L(1)?(cos2t)????2?2222s2s?4s(s?4)
11?fT(t)?e1?et2ldt?1?ass2?as?as(1?e?as)
(4)L(t)?3s
(5)
L(f(t))?L(e?e2bt?bt225. 求下列函数的拉普拉斯变换.
(1)f(t)?11111b?sinlt(2)f(t)?e?2t?sin5t
)?L(e)?L(e)?????22222s?b2s?bs?b
1bt?bt(3)f(t)?1?t?et(4)f(t)?e?4t?cos4t (5f(t)?u(2t?4)
2.求下列函数的拉普拉斯变换.
?2,0?t?1?(1)f(t)??1,1?t?2?0,t?2 ?
(6f(t)?5sin2t?3cos2t
1(7) f(t)?t2?e?t (8) f(t)?t2?3t?2 解:(1)
f(t)??cost,0?t?π(2)f(t)??
0,t?π? t2l?sinlt??12lt2l1[(?t)?sinlt]?sinlt)????2ls222解: (1)
L(f(t))?? ??0f(t)?edt??st?2?edt??edt?(2?e?e01s1?st2?st1F(s)?L(f(t))?L(?s?2s12l?L[(?t)?sinlt]s(s?l)222)
?πs(2)
??12ls?l(l2)???22l(s?l)L(f(t))????0f(t)?edt??cost?edt?(1?e)?20ss?1
?stπ?st1?πs1?e
(2)F(s)?L(f(t))?L(e?2t?sin5t)?5(s?2)?25
1s?L(?t?e)t23.设函数f(t)?cost??(t)?sint?u(t),其中函数
(3)F(s)?L(f(t))?L(1?t?e)?L(1)?L(t?e)?ttu(t)为阶跃函数, 求f(t)的拉普拉斯变换.
解:
?1s?(1s?1)??1s?1(s?1)2
(4)
4 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
F(s)?L(f(t))?L(e?4t?cos4t)?s?4(s?4)?162
F?(k)(s)?dF(k?1)(s)dsk?1?d??st??0(?t)k?1?f(t)?e?stdtds]dt??1,t?2(5)u(2t?4)??
0,其他?
F(s)?L(f(t))?L(u(2t?4))=?u(2t?4)?e0??st??0?[(?t)k?f(t)?e?s???0(?t)?f(t)?ek?stdt?L[(?t)?f(t)](s)
dt8. 记L[f](s)?F(s),如果a为常数,证明:
L[f(at)](s)?1sF() aa=?e2??stdt=1se?2s(6)
F(s)?L(f(t))?L(5sin2t?3cos2t)?5L(sin2t)?3L(cos2t)?5?2s?42证明:设L[f](s)?F(s),由定义
L[f(at)]???3?ss?42?10?3ss?42???0?saf(at)?eu?stdt.(令at?u,t???ua,dt?dua)(7)
1?(1??t1F(s)?L(f(t))?L(t?e)?22?3)3?()23???0f(u)?edua?1a?0f(u)?e?saudu
?1sF()aa(s??)2(s??)2
9. 记L[f](s)?F(s),证明:
L[f(t)t]?(8)
1222F(s)?L(f(t))?L(t?3t?2)?L(t)?3L(t)?2L(1)?(2s?3s?2)s
6.记L[f](s)?F(s),对常数s0,若
Re(s?s0)??0,证明L[es0t??sF(s)ds,即
???0f(t)t?e?stdt????sF(s)ds
证明:
?f](s)?F(s?s0)
??sF(s)ds???0???s[f(t)?edt]ds??s?st???0f(t)?[?eds]dts?st?st证明:
L[e?s0t???f](s)?f(t)?e??01?stf(t)?[?et]dt????0f(t)t?edt?L[f(t)t]
es0t?f(t)?e?stdt?(s?s0)t??0(s0?s)tdt???0f(t)?e(n)dt?F(s?s0)n10.计算下列函数的卷积
(1)1?1(2)t?t
t(3)t?e (4)sinat?sinat
(5)?(t??)?f(t) (6sinat?sinat
解:(1)1?1?
7 记L[f](s)?F(s),证明:F(s)?L[(?t)?f(t)](s) 证明:当n=1时, F(s)????0??f(t)?e?st?stdt
F?(s)?[??0f(t)?edt]??st?1?1d?0t?t 16t
3???0?[f(t)?e?s]dt?????0
t?f(t)?edt??L(t?f(t))n?st(2)t?t? (3)
?t0??(t??)d??所以,当n=1时, F(n)(s)?L[(?t)?f(t)](s)显然
t?e?tt?t0??ed??e????ed???e????de00t0t??t0t??tt??tt??成立。
假设,当n=k-1时, 有
F(k?1)??e[?e]??ed??e?t?1(4)
??
(s)?L[(?t)k?1?f(t)](s)
现证当n=k时
5 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
1sinat?sinat??sina??sina(t??)d????[cosat?cos(2a??at)]d?002tt(1)F(s)?
(2)F(s)?s(s?1)(s?2)s?8(s?4)222?tsinat?cos2at2a21
(5)
?(t??)?f(t)???(t??)?f(t??)d?????(t??)?f(t??)d(t??)00tt(3)F(s)?
1s(s?1)(s?2)
0t0,t?????t?(?)?f(?)d???0?(?)?f(?)d???f(t??),0???t (6)
sint?cost??t0sin??cos(t??)d??1t2?0[sint?sin(2??t)]d??t2sint?tt2?0sin(2??t)d??t2sint?14cos(2??t)t0?t2sint?14[cost?cos(?t)]?t2sint11.设函数f, g, h均满足当t<0时恒为零,证明
f?g(t)?g?f(t)以及
(f?g)?h(t)?f?h(t)?g?h(t)
证明:
f?g(t)??t0f(?)g?t???d??令?t????=u???0tf(t?u)?g?u?du??t0f(t?u)?g?tu?du??0g(?)?f?t???d??g?f(t)?tf?g??h(t)??0?f(?)?g?????h?t???d???t0f????h(t??)?d???t0g(?)?h?t???d??f?h(t)?g?f(t)12.利用卷积定理证明
L[?tf(t)dt]?F(s)0s
g(t)??tf(t)dt证明:设
0g?(t)?f(t),且g(0)?0,则
L[g?(t)]?sL[g(t)]?g(0)?sL[g(t)],则
L[g(t)]?L[g?(t)]s,所以
L[?tf(t)dt]?F(s)0ds
13. 求下列函数的拉普拉斯逆变换.
(4)F(s)?s(s2?4)2
(5)F(s)?lns?1s?1
2(6F(s)?s?2s?1s(s?1)2
解:(1)F(s)?s(s?1)(s?2)?21s?2?s?1
L?1(2L?1(1?12tts?2?1s?1)?2s?2)?L(1s?1)?2e?e
(2) F(s)?s2?8?32L?1(2)?1L?1(s?4(s2?4)24s2?42(s2?4)2)?34sin2t?12tcos2t
(3F(s)?1s(s?1)(s?2)?12s?11s?1?2(s?2)
故L?1(F(s))?1?2t2?e?t12e? (4)F(s)?s??4s(s2?4)2??14(s2?4)2??14?(2s2?22)?因为
L?1(2s2?22)?sin2t 所以
L?1(F(s))?L?1(?1s4?t(s2?4)2)?4sin2t
(5)
F(s)?lns?1(11g(t)s?1???0u?1?u?1)du??L(t)
其中
6 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
g(t)?L(?11s?1?1s?1)?e?t?e
tL(?11s)?1πt?12,L(?11s?1t)?e
所以 F(s)??L(e?t?ett)?L(e?ettt?t所以,根据卷积定理有
)
L[?11s(s?1)et]?1π?t?12?e?2t2?πett0yet?12(t?y)dy?21π2etet?t0y2edy?y2?1?yf(t)?L(F(s))???1e?t?e?e?et?t?2?sht
?2?tedy??????y令y?u?e?u2du??tedyttt2(6)F(s)?s?2s?1122s(s?1)2??s?s?1?(s?1)2
所以
L?1(F(s))?L?1(?1?12?12s)?L(s?1)?L((s?1)2)??1?2et?2tet?2tet?2et?1
14.利用卷积定理证明 L?1[s(s2?a2)]?t2a?sinat
证明: L?1[s(s2?a2)2]?L?1(ss2?a2?a1s2?a2?a)
又因为
L(cosat)?ss2?a2,L(sinat)?as2?a2
所以,根据卷积定理
L?1(sa11s2?a2?s2?a2?a)?cosat?asinat??tcosa??1?sin(at?a?)d1td0a??a?1[sinat?sin(2a02??at)]??t2a?sinat15.利用卷积定理证明
L?1[1?2t2s(s?1)]πet?0e?ydy
证明:
L?1[1?111s(s?1)]?L[s?s?1] L?1[1s(s?1)]?2ett2π?0e?ydy
因为
π0π0π0
16. 求下列函数的拉普拉斯逆变换.
(1)F(s)?1(2)(s2?4)2F(s)?142
s?5s?4
(3)F(s)?s?2(s2?4s?5)2 2(4)F(s)?2s?3s?3(s?1)(s?3)2
解:(1) F(s)?112(s2?4)1s2?4(s2?4)2?16?(s2?4)2?8?(s2?4)2
?12?1s2?416?s2?48?(s2?4)2故
2L?1(F(s))?112?1s?416L?(s2?4)?18L((s2?4)2)?116sin2t?18t?cos2t
(2):
F(s)?1s4?5s2?4?13(1s2?1?1s2?4)?13(112
s2?1?2s2?22)L?1(F(s))?1L?1(113s2?1)?1L?(26s2?22)
?13sint?16sin2t)(3)
F(s)?s?2s?211(s2?4s?5)2?[(s?2)2?1]2??2((s?2)2?1)?
故L?1(F(s))?12t?e?2t?sint
(4)
7 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
F(s)??A?2s?3s?3(s?1)(s?3)14,B??14223?As?132?Bs?3?C(s?3)2?D(s?3)3y(t)?L[Y(s)]??Res[?1?Res[Y(s)?ek?1stst;sk](s?2)?est,C?,D?3
(s?2)?e(s?1)(s?1)(s?3)(s?2)?e3818st;?1]?Res[(s?1)(s?1)(s?3);1]
?Res[故
?344?2F(s)???23s?1s?3(s?3)(s?3)113??(s?1)(s?1)(s?3)?t;?3]14e?e?te?3t(2) 方程两边同时取拉氏变换,得
s?Y(s)?s?2?Y(s)?4?221s?12?5?ss?222
且
(1s?3)???1(s?3)2(s?1)Y(s)?4?,(1s?3)???2?1(s?3)31s?122?5?ss?25s22?(s?2)?s?2(s?1)s22Y(s)?4(s?1)(s?1)1?122?(s?1)(s?2)12222
?2(所以
L(F(s))??1s?1s?122?12)?s?(s?1s?2?12)?2s?1s?1?22
14e?t?14e?3t?32t?e?3t?3t?e2?3t??
s?1s?2?s22
17.求下列微分方程的解
(1)y???2y??3y?e?t,y(0)?0,y?(0)?1(2)y???y??4sint?5cos2t,y(0)??1,y?(0)??2
(3)y???2y??2y?2et?cos2t,y(0)?y?(0)?0
(4)y????y??e2t,y(0)?y?(0)?y??(0)?0 (5)y(4)?2y???y?0,y(0)?y?(0)?y???(0)?0,y??(0)?1
解: (1)设
L[y(t)]?Y(s),L[(y?(t)]?sY(s)?y(0)?sY(s),L[(y??(t)]?sY(s)?sy(0)?y?(0)?sY(s)?122y(t)?L[Y(s)]??2sint?cos2t
(3)方程两边取拉氏变换,得
s?Y(s)?2s?Y(s)?2Y(s)?2?2s?1(s?1)?12
(s?2s?2)Y(s)?Y(s)?2(s?1)[(s?1)?1]222(s?1)(s?1)?122??[1(s?1)?12]?
因为由拉氏变换的微分性质知,若L[f(t)]=F(s),则
L[(?t)?f(t)]?F?(s)方程两边取拉氏变换,得
s?Y(s)?1?2s?Y(s)?3Y(s)?(s?2s?3)Y(s)?22
即
1s?1s?2s?1
L[F?(s)]?(?t)?f(t)?(?t)?L[F(s)]?1?11s?1
因为L?1[所以
L{?1?1?
1(s?1)?12]?e?sintt
Y(s)?s?2(s?1)(s?2s?3)2?s?2(s?1)(s?1)(s?3)2(s?1)[(s?1)?1]?12}??L[(21?11(s?1)?1t2)?]s1??1,s2?1,s3??3为Y(s)的三个一级极点,
??(?t)L[则
(s?1)?1t2]?t?e?sint
故有y?t??t?e?sint
8 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
(4)方程两边取拉氏变换,设L[y(t)]=Y(s),得
s?Y(s)?s?y(0)?s?y?(0)?y??(0)?s?Y(s)?y(0)?s?Y(s)?s?Y(s)?Y(s)?1?12332得
s?Y(s)?(s?1)X(s)?...(1)??s?1? ?3X(s)?(s?2)?Y(s)?2?1?s?1...(2)?s?1s?1?1s?21s?2?1s(s?2)(s?1)2
(2)代入(1),得
3X(s)?(s?2)?[(s?1)X(s)?(s?s?1)X(s)?2s?2s(s?1)ss?1?]?2s?1s?1s?1故
y(t)?L[Y(s)]??11e?t?1e?2t?3s?1s?1t?e?3t?3t?e2?3t
?s(s?2)s?1s?s?1
442(5)设L[y(t)]=Y(s),则
L[(y?(t)]?sY(s)?y(0)?sY(s),L[(y??(t)]?s2?Y(s)?sy(0)?y?(0)?s2Y(s)L[(y???(t)]?s3?Y(s)?s2?y(0)?sy?(0)?y??(0)?s3Y(s)?1L[(y(4)(t)]?s4?Y(s)?s3?y(0)?s2?y?(0)?sy??(0)?y???(0)?s4?Y(s)?s
方程两边取拉氏变换,,得
s4?Y(s)?s?2s2?Y(s)?Y(s)?0(s4?2s2?1)?Y(s)?sY(s)?s(s2?1)2?12?2s(s2?1)2??12?(1s2?1)?故
y(t)?L?1[s]?L?1[?1?(11(s2?1)22s2?1)?]?2t?sint18.求下列微分方程组的解
(1)??x??x?y?et ?x(0)?y(0)?1??y??3x?2y?2?et
?x??2y??g(t)(2) ?x???y???y?x(0)?x?(0)?y(0)?y?(0)?0?0
解:(1) 设
L[(x(t)]?X(s),L[(y(t)]?Y(s)L[(x?(t)]?s?X(s)?x(0)?s?X(s)?1L[(y?(t)]?s?Y(s)?y(0)?s?Y(s)?1, 微分方程组两式的两边同时取拉氏变换,得 ???s?X(s)?1?X(s)?Y(s)?1?s?1? ?s?Y(s)?1?3X(s)?2Y(s)?2?s?1故X(s)?1于是有x(t)?ets?1...(3)(3)代入(1),得
Y(s)?(s?1)?1s?1?ss?1?1s?1?y(t)?et
(2)设
L[(x(t)]?X(s),L[(y(t)]?Y(s),L[(g(t)]?G(s)L[(x?(t)]?s?X(s),L[(y?(t)]?s?Y(s)L[(x??(t)]?s2?X(s),L[(y??(t)]?s2?Y(s),方程两边取拉氏变换,得
?s?X(s)?2s?Y(s)
?G(s)...(1)??s2?X(s)?s2?Y(s)?Y(s)?0...?2?(1)?s?(2),得
Y(s)??ss2?1?G(s)...(3)
?y(t)?L?1[Y(s)]??g(t)*cost???tg0?cos?t???d?
(3)代入(1):
s?X(s)?2s?[?ss2?1?G(s)]?G(s)即:2s?X(s)?(1?2ss2?1)G(s)?1?s2s2?1?G(s)
2X(s)?1?s?s?G(s)??s2?1??1?s?2s1?s2???G(s)所以
?x(t)?L?1[X(s)]?(1?2cost)?g(t)??t0(1?2cos?)?g(t??)d?故
9 / 10
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
x(t)??t0(2)设L[y(t)]=Y(s), 方程两边取拉氏变换,得
(1?2cos?)?g(t??)d?ty(t)???g(?)?cos(t??)d?0Y(s)?L(t?y(t))?1s22
Y(s)?Y(s)?19.求下列方程的解
(1)x(t)??x(t??)?e?d??2t?30t1s2?Y(s)?11s
解:(1)设L[x(t)]=X(s), 方程两边取拉氏变换,(2)y(t)??(t??)?y(?)d??t0ts?1?1?12?y(t)?L(Y(s))?L(1s?12)?sht得
X(s)?X(s)?1s?1?2s2?3sX(s)[1?12?3ss?1]?s2X(s)?(2?3s)(s?1)??3s2?5s?2s3s3??3s?5s2?2s3?x(t)??3?5t?t2
10 / 10
正在阅读:
复变函数与积分变换(修订版-复旦大学)课后的习题答案01-25
二年级语文科教学总结五篇06-10
工业分析技能大赛题库--多选题11-10
2018苏教版小学南京大学出版社6年级全册 心理健康教案11-02
中庭满堂架搭设方案01-25
南大职业生涯第二次作业03-21
2018年人教版PEP最新版小学六年级英语下册:Unit 3 Part A Lets learn.说课稿(精品电子教案)09-13
信息安全技术_教学大纲08-15
对高职院校新生班主任工作思路的探讨04-22
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 复旦大学
- 复变
- 修订版
- 课后
- 习题
- 变换
- 函数
- 积分
- 答案
- 2014年度广东省广播影视奖获奖作品篇目
- 加强人民政协理论研究工作的思考
- 行车时刻表编制和车辆调度方法 - 图文
- 基础会计学模拟题1
- 西城区国资委2016年工作总结
- 地大《测量学》离线作业
- 医疗质量管理与持续改进工作管理手-2015
- 2018年中秋国庆活动策划-范文模板(12页)
- 介质损耗正接法与反接法
- 酒店消防演习方案及请示报告
- 核舟记学案答案
- 2012广告业务部门目标及薪酬细则
- 中国耐热钢行业现状调研及未来五年投资决策分析报告
- 数字信号处理教语音信号处理课程设计心得
- 电磁场在社会中的应用
- 苯与芳香烃用次氯酸叔丁脂t
- 调整机关事业单位艰苦边远地区津贴标准
- 穿层钻孔瓦斯抽放半径
- 自备电厂安全标准
- 物理(工)实践课程(00421)考核大纲