线性代数测试试卷及答案
更新时间:2023-04-13 12:25:01 阅读量: 实用文档 文档下载
精品文档 线性代数(A 卷)
一﹑选择题(每小题3分,共15分)
1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( )
(A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+
2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )
(A) n (B) s (C) n s - (D) 以上答案都不正确
3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( )
(A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--
4. 设实二次型11212222(,)(,)41x f x x x x x ????= ? ?-????
的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ?-??
(D) 1001A ??= ??? 5. 若方阵A 的行列式0A =,则( )
(A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关
(C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)
1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;
2. 设100210341A -?? ?=- ? ?-??
,*A 是A 的伴随矩阵,则*1()A -= ;
3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ;
4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;
5. 设A 为正交矩阵,则A = ;
精品文档 6. 设,,a b c 是互不相同的三个数,则行列式2
2211
1a b
c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ;
8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为 ;
9. 若二次型2
2
2
123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值范围
为 ;
10. 设A 为n 阶方阵,且满足2240A A I +-=,这里I 为n 阶单位矩阵,那么1A -= . 三﹑计算题(每小题9分,共27分)
1. 已知210121012A ?? ?= ? ???
,100100B ?? ?= ? ???,求矩阵X 使之满足AX X B =+.
2. 求行列式1234
23413412
4123
的值. 3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的一个最大无关组和秩.
四﹑(10分)设有齐次线性方程组
12312312
3(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=??-++=??++-=?
问当λ取何值时, 上述方程组(1)有唯一的零解﹔(2)有无穷多个解,并求出这些解. 五﹑(12分)求一个正交变换X PY =,把下列二次型化成标准形:
2
2
2
123123121323(,,)444f x x x x x x x x x x x x =+++++.
六﹑(6分)已知平面上三条不同直线的方程分别为
精品文档 123: 230,
: 230,: 230.
l ax by c l bx cy a l cx ay b ++=++=++=
试证:这三条直线交于一点的充分必要条件为0a b c ++=.
线性代数(A 卷)答案
一﹑1. D 2. C 3. B 4. A 5. A 二﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-1
6. ()()()c a c b b a ---
7. 0
8. 111,,23---
9. 405t -<< 10. 1142
A I + 三﹑1. 解 由AX X
B =+得1()X A I B -=-. (2分) 下面求1()A I --. 由于
110111011A I ?? ?-= ? ???
(4分)
而
1()A I --=011111110-?? ?- ? ?-??
. (7分)
所以
10111001()11101111100011X A I B --?????? ??? ?=-=-=- ??? ? ??? ?--??????
. (9分) 2. 解 1
23423413
4124123=102341034110412101
23123413411014121123= (4分) 1
2340113100
0440004
-=-- (8分) 160= (9分) . 3. 解 由于
精品文档 3112341234011301131301053307330733r r --???? ? ?---- ? ?- ? ?-- ? ?----????
324212345011300212700424r r r r -?? ?--- ? ?+ ?--?? 43123401132002120000r r -?? ?-- ?+ ? ???
(6分) 故向量组的秩是 3 ,123,,ααα是它的一个最大无关组。(9分) 四﹑解 方程组的系数行列式
111
111111
A λλλ-=--2(1)(2)λλ=-+- (2分) ①当2(1)(2)0A λλ=-+-≠,即1λ≠-且2λ≠时,方程组有唯一的零解; (4分) ②当1λ=-时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为
12 1 21 1 11 2 A -?? ?=- ? ?-??
, 它有一个二阶子式123021
-=-≠-,因此秩(A )2n =<(这里3n =),故方程组有无穷多个解.对A 施行初等行变换,可得到方程组的一般解为
13233
3,,,x x x x x x =??=??=? 其中3x 可取任意数; (7分) ③当2λ=时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为
11 1 11 1 11 1 A ?? ?= ? ???
,
显然,秩(A )1n =<(这里3n =),所以方程组也有无穷多个解.对A 施行初等行变换 可得方程组的一般解为
123223
3,,,x x x x x x x =--??=??=? 其中23,x x 可取任意数. (10分)
精品文档 五﹑ 解 二次型的矩阵为
12 2 21 2 22 1 A ?? ?= ? ???
, (2分)
因为特征多项式为
21
2 2 2
1 2 (1)(5)22 1
I A λλλλλλ----=---=+----, 所以特征值是1-(二重)和5. (4分)
把特征值1λ=-代入齐次线性方程组()0I A X λ-=得
1231231
232220,2220,2220,x x x x x x x x x ---=??---=??---=? 解此方程组可得矩阵A 的对应于特征值1λ=-的特征向量为
12(1,0,1),(0,1,1)T T αα=-=-.
利用施密特正交化方法将12,αα正交化:
11(1,0,1)T βα==-, 211(,1,)22
T β=--, 再将12,ββ单位化得
1(22T η=
,2(T η=, (8分) 把特征值5λ=代入齐次线性方程组()0I A X λ-=得
1231231
234220,2420,2240,x x x x x x x x x --=??-+-=??--+=? 解此方程组可得矩阵A 的对应于特征值5λ=的特征向量为
3(1,1,1)T α=.
再将3α单位化得
3T η=. (10分) 令
精品文档
123(,,)0
P ηηη?? ? ?
?== ? ? ? ? ??
?
则P 是一个正交矩阵,且满足
1100010005T P AP P AP --??
?
==- ? ???
.
所以,正交变换X PY =为所求,它把二次型化成标准形
222123123(,,)5f x x x y y y =--+. (12分)
六﹑证明:必要性
由123,,l l l 交于一点得方程组
230
230230ax by c bx cy a cx ay b ++=??
++=??++=?
有解,可知
231()()230()10231a b c
b c R A R A b
c a a b c c a c a b
a b
=?=?++= (2分)
由于222
1211[()()()]01b c
c
a b a c b a c a b
=--+-+-≠,所以0a b c ++= (3分)
充分性:0()a b c b a c ++=?=-+
2222222()2[()][()]022312366()10231a b
ac b ac a c a c a c b c a b c a b c b c b c a b c a a b c c a c a b c a b a b ??
=-=-+=-++-≠??
?
??==++=???又因为
()()2R A R A ?==, (5分) 因此方程组
精品文档 230230230ax by c bx cy a cx ay b ++=??++=??++=?
有唯一解,即123,,l l l 交于一点. (6分)
线性代数习题和答案
第一部分 选择题 (共28分)
一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是
符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。
1.设行列式
a a a a 11122122=m ,a a a a 13112321=n ,则行列式a a a a a a 111213212223++等于( ) A. m+n
B. -(m+n)
C. n -m
D. m -n
2.设矩阵A =100020003?? ??
???,则A -1等于( ) A. 13
000120001?? ???????? B. 10001200013?? ??
??????
正在阅读:
线性代数测试试卷及答案04-13
XX-XX学年小学三年级英语教学工作总结04-15
2017年公交客车市场深度调查研究与发展前景分析报告06-03
lass弦乐音源说明书 - 图文03-08
大学英语三级语法大全05-16
浅谈朱自清散文的美学特征06-01
研究生英语系列教程多维教程探索课后答案03-19
其实我很棒作文1000字07-14
神经网络心得12-13
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 线性代数
- 试卷
- 答案
- 测试
- 闲不住的老妈_六年级作文
- 初中英语短语归纳审核稿
- 高要论文网代理发表职称论文发表-土木工程项目质量管理有效措施
- 2022下半年陕西省渭南市华阴市事业单位招聘考试真题及答案
- 2022年南通大学理学院806固体物理之大学物理考研强化模拟五套题
- 病理学题库及答案1200题(二)
- 物流服务合同LOGISTICS SERVICE CONTRACT(中英文对照版)
- 七年级数学下册第九章不等式与不等式组9.1不等式9.1.1不等式及其
- 初中英语必背的375个重点短语
- 五年级英语填空题专项练习
- 作为生物的社会的教学设计
- 学生会、院社团联合部新干事聘任大会发言稿
- 法国科技企业孵化器研究
- 人力资源开发与管理练习题及答案
- 律学法学与法理学概念辨析━━试论法理学的范围演讲范文
- 福师《幼儿园教育》在线作业一满分答案
- 2022助理工程师年度个人工作总结
- 党支部会议发言稿的范本
- 初中化学酸碱盐中考复习试题整理
- (完整版)新视野大学英语视听说第三版第4册答案