新人教版2018年七年级暑假数学自我强化巩固训练试卷

更新时间:2024-05-16 06:19:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2018年七年级暑假数学自我强化巩固训练试卷

一、填空题

1.计算(﹣2+1)= ▲ ,3= ▲ .

2.一种花瓣的花粉颗粒直径约为0.0000079米,0.0000079用科学记数法表示为 ▲ . 3.若xm=3,xn=2,则xmn= ▲ .

0-2

4.命题“等角的补角相等”的逆命题是 ▲ .

A ▲ °5.如图∠1,∠2,∠3是五边形ABCDE的外角,且∠1=∠2=∠3=72°,则∠C+∠D=.

D C 3 B 2 A A

D ′

E D

EF65B

C (第6题)

F

C

BDCE 1 (第5题)

(第9题)

6.如图,一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65o,则∠AED′等于 ▲ °.

7.已知:a+b=3,ab=﹣2,则a2b+ab2的结果是 ▲ .

?x=-1,?3x+2y=m,

8.已知?是二元一次方程组?的解,则m-n的值是 ▲ .

?y=2.?nx-y=1.

9.如图,D为△ABC的BC边上任意一点,F为AD的中点,E为BF的中点,△CEF的面积为5,则△ABC的面积为 ▲ .

10.如果关于x的不等式2x-4m≤0有3个正整数解,则 m 的取值范围是 ▲ . 一、选择题

11.下列计算正确的是

A.a3+a2=a5

B. a3-a2=a

C. a3·a2=a 6

D.a3÷a2=a

12.若一个三角形的两边长分别为3cm,7cm,则第三边长可能是

A.3cm

B.4cm

C.7cm

D.10cm

13.不等式-2x≥-4的解集在数轴上表示为

A. B. C. D. 14.下列命题中,属于真命题的是

A.相等的角是对顶角 C.若a=b,则a=b

B.同旁内角互补

D.如果直线l1∥l2,直线l2∥l3,那么l1∥l3.

15.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 A.75

(第15题)

E 1

B.60°

C.45°

A 1 3 4 C D

D.80°

222333B 2 (第16题)

(第18题)

16.如图,给出下列条件:①∠1=∠4;②∠2=∠3;③AB∥CD,且∠A=∠C;④∠EBC=∠A;其中能推出AD∥BC的条件有

A.①②③

B.①③④

C.①②④

D.②③④

17.小君问叔叔的年龄,叔叔说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”小君和叔叔现在的年龄分别是 A.8岁、20岁

B.16岁、28岁

C.15岁、27岁

D.9岁、21岁

18.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 A.6 三、解答题 19.(6分)计算:

(1)(-2a3)2-a2·(-a4)-a8÷a2; (2)(a+2b)(a+b)-3a(a+b).

20.(6分)因式分解:

(1)ab2-6ab+9a; (2)a2(x-y)-x+y.

B.7

C.8

D.10

??2x-y=2,

21.(5分)解方程组?

?4x-3y=8.?

x-4<3(x-2),??

22.(5分)解不等式组 ?2x+1,并求出最小整数解.

+1<x.??3

23. (7分)叙述并证明三角形内角和定理.

定理: . 已知: . 求证: . 证明:

24. (8分)如图,已知AB∥CD,∠1=∠F,∠2=∠E.

(1)若∠E=40°,求∠F;

(2)思考:∠E与∠F有怎样的数量关系,并说明理由.

25.(8分)某工程队正进行某项工程的施工,有大量的沙石需要运输,该工程队车队现有载重量为10吨、15吨的两种卡车共10辆,一次能运输130吨沙石. (1)求该车队现有载重量为10吨、15吨的卡车各有多少辆?

(2)随着工程的进展,该车队需要一次运输沙石的能力不低于270吨,准备新增购这两.种卡车共10辆(两种卡车都要有),请帮车队设计合理的购买方案. ...

26. (9分)如图,已知AM∥BN,∠A=m,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C、D.,且满足|∠CBP-∠PBD|=n. (1)若m=60°,求∠CBD的度数; (2)若m=60°,n=0°,求∠ABD的度数;

(3)求∠CBP、∠PBD的度数.(用含m、n的代数式表示)

27.(10分)【初步感知】

定义:两条相交直线的夹角的角平分线所在的直线叫做相交线的和谐线.

如图①,直线AB与直线CD相交于点O,l1是∠AOD的角平分线所在的直线, l2是∠AOC的角平分线所在的直线,则l1与l2就是直线AB、CD的和谐线. (1)直线AB、CD的两条和谐线的位置关系为 ;

【问题解决】

如图②,已知a∥b,直线c与直线a、b交于点A、B,

(2)直线a、c的和谐线与直线b、c的和谐线有怎样的位置关系,并说明理由. c c

图②

图③

B

b

B β

A a

A

α

a

图①

C

B

A l1

D O l2

b

【延伸推广】

如图③,已知直线c与直线a、b交于点A、B,若a、c的夹角为α,b、c的夹角为β, α+β≠180°,a、c的和谐线与b、c的和谐线交于点C.

(3)画出图形,直接写出∠ACB的度数.(用含α、β的代数式表示)

参考答案

一、填空题(每小题2分,共计20分)

13-

1.1, 2.7.9×106 3. 4.如果两个角的补角相等,那么这两个角相等

923

5.216 6.50 7.-6 8.4 9.20 10.≤m<2

2二、选择题(每小题2分,共计16分)

题号 答案 11 D 12 C 13 C 14 D 15 A 16 D 17 B 18 C 三、解答题(本大题共9小题,共计64分) 19.(6分)计算:

(1)解:原式=4a6+a6-a6 ······································································· 2分 =4a6. ······················································································ 3分 (2)解:原式=a2+ab+2ab+2b2﹣3a2﹣3ab ···················································· 2分

=-2a2+2b2 ················································································· 3分

20.(6分)

(1)解:原式=a(b2-6b+9) ··································································· 2分

=a(b-3)2 ···················································································· 3分

(2)解:原式=a2(x-y)-(x-y) ································································· 1分

=(x-y)(a2-1) ················································································ 2分 =(x-y) (a+1) (a-1) ······································································· 3分

21.(5分)

解:由②-①×2,得-y=4,

解得:y=-4, ························································································· 2分 把y=-4代入①,得x=-1, ······································································ 4分

?x=-1,∴原方程组的解为? ······································································· 5分

?y=-4.

22.(5分)

解:由①,得x>1, ················································································· 1分

由②,得x>4, ················································································· 3分 ∴不等式组的解集是x>4, ········································································ 4分

∴最小整数解是5. ·················································································· 5分 23.(7分)

解:定理:三角形的内角和是180°;

已知:如图,△ABC的三个内角分别为∠A、∠B、∠C;

求证:∠A+∠B+∠C=180°. ······································································· 3分

············································································································· 4分 证明:过点A作直线MN,使MN∥BC.

∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC.(两直线平行,内错角相等) ············· 5分 ∵∠MAB+∠NAC+∠BAC=180°,(平角定义)

∴∠B+∠C+∠BAC=180°,(等量代换) ························································· 6分 即∠A+∠B+∠C=180°. ············································································· 7分 24.(8分)

(1)解: ∵∠E=40°,∠2=∠E,∴∠2=40°.…………1分

∴∠DCE=180°-(∠E+∠2)=100°.…………2分 ∵AB∥CD,∴∠ABF+∠DCE=180°.

∴∠ABF=180°-100°=80°. ……………………3分 ∵∠1=∠F,

11

∴∠F=(180°-∠ABF)=(180°-80°)=50°.

22

······························································································ 4分

(2)解: ∠E+∠F=90°.

EBGCA12DOHF(第24题)

∵∠2=∠E,∠1=∠F,

11

∴∠E=(180°-∠DCE),∠F=(180°-∠ABF). ····················· 6分

2211

∴∠E+∠F=(180°-∠DCE)+(180°-∠ABF)

22

1

=(360°-∠DCE-∠ABF). ····································· 7分 2

∵AB∥CD,∴∠ABF+∠DCE=180°,

1

∴∠E+∠F=(360°-180°)=90°. ············································ 8分

2

25.(8分)

解:(1)设该车队现有载重量为10吨、15吨的卡车各有x辆和y辆.

?x+y=10?x=4

根据题意,得:?,解得:?. ······························ 3分

?10x+15y=130?y=6

答:该车队现有载重量为10吨、15吨的卡车各有4辆和6辆. ··········· 4分 (2)设新增购载重量为10吨的卡车z辆,则新增购15吨的卡车(10-z)辆.

根据题意,得10(4+z)+15(6+10-z)≥270,解得z≤2.···················· 6分 则z的正整数解为1,2.

答:新增载重量为10吨的卡车1辆或2辆,新增15吨的卡车9辆或8辆. ··················································································································· 8分 26.(9分)

解(1)∵AM∥BN,∴∠A+∠ABN=180°.

∵∠A=m=60°,∴∠ABN=120°. ······················································· 1分 ∵BC、BD分别平分∠ABP和∠PBN, 11

∴∠CBP=∠ABP、∠PBD=∠PBN,

22

111

∴∠CBD=∠ABP+∠PBN=∠ABN=60°. ········································· 3分

222(2)∵|∠CBP-∠PBD|=n,n=0°,∴∠CBP=∠PBD,····························· 4分 11

由(1)得∠ABP=∠PBN=∠ABN=60°,∠PBD=∠PBN=30°, ············· 5分

22∴∠ABD=∠ABP+∠PBD=90°. ······················································· 6分

??x+y=180-m??x+y=180-m

2或?2. (2)设∠CBP=x°,∠PBD=y°,根据题意得:?

???x-y=n?y-x=n

··················································································································· 8分

180-m+2n180-m-2n

x=x=

44

解得: 或.

180-m-2n180-m+2ny=y=

44

??????

180-m+2n180-m-2n

答:情况一:∠CBP的度数是,∠PBD的度数是;

44

180-m-2n180-m+2n

情况二:∠CBP的度数是,∠PBD的度数是.

44

············································································································· 9分

27.(10分)

解:(1)垂直; ······················································································· 1分 (3)平行或垂直;(判断说理各1分,另外一种垂直和平行需简要说明,同理可得,不说扣1分) ······················································································· 6分

B

b

B

b

A

c

a

c A

a

(3)∠ACB的度数为

α+β-180360-α-βα+β

(如图1、图2)或(如图3)或(如图4). 222

(图与结果相对应1分) ······································································ 10分

图1 图2

图3 图4

本文来源:https://www.bwwdw.com/article/0bk7.html

Top