Effects of microstructure on mixed-mode, high-cycle fatigue crack-growth thresholds in Ti-6
更新时间:2023-06-07 04:35:01 阅读量: 实用文档 文档下载
- effects推荐度:
- 相关推荐
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
Effectsofmicrostructureonmixed-mode,high-cyclefatiguecrack-growththresholdsinTi-6Al-4Valloy
DepartmentofMaterialsScienceandEngineering,UniversityofCalifornia,Berkeley,California94720-1760,USA,2MetalsFabricationDivision,GeneralMotors,Troy,Michigan48084,USAReceivedinfinalform10January2002
R.K.NALLA1,J.P.CAMPBELL2andR.O.RITCHIE1
1
ABSTRACT
Effectofmicrostructureonmixed-mode(modeI II),high-cyclefatiguethresholdsinaTi-6Al-4Valloyisreportedoverarangeofcracksizesfromtensofmicrometerstoinexcessofseveralmillimeters.Specifically,twomicrostructuralconditionswereexam-inedÐafine-grainedequiaxedbimodalstructure(grainsize$20mm)andacoarserlamellarstructure(colonysize$500mm).Studieswereconductedoverarangeofmode-mixities,frompuremodeI(DKII/DKI 0)tonearlypuremodeII(DKII/DKI$7.1),atloadratios(minimumload/maximumload)between0.1and0.8,withthresholdscharacterizedintermsofthestrain-energyreleaserate(DG)incorporatingbothtensileandshear-loadingcomponents.Inthepresenceofthrough-thicknesscracksÐlarge(>4mm)comparedtomicrostructuraldimensionsÐsignificanteffectsofmode-mixityandloadratiowereobservedforbothmicrostructures,withthelamellaralloygenerallydisplayingthebetterresistance.However,theseeffectsweresubstantiallyreducedifallowancewasmadeforcrack-tipshielding.Additionally,whenthresholdsweremeasuredinthepresenceofcrackscomparabletomicrostructuraldimensions,specificallyshort($200mm)through-thicknesscracksandmicrostructurallysmall(<50mm)surfacecracks,wheretheinfluenceofcrack-tipshieldingwouldbeminimal,sucheffectsweresimilarlymarkedlyreduced.Moreover,small-crackDGTHthresholdsweresome50±90timessmallerthancorrespondinglargecrackvalues.SucheffectsarediscussedintermsofthedominantroleofmodeIbehaviourandtheeffectsofmicro-structure(inrelationtocracksize)inpromotingcrack-tipshieldingthatarisesfromsignificantchangesinthecrackpathinthetwostructures.
Keywordscrack-tipshielding;fatiguethresholds;high-cyclefatigue;loadratio;microstructure;mixedmode;shortcracks;Ti-6Al-4V;titanium.
INTRODUCTION
Thecontroloffailuresowingtohigh-cyclefatigue(HCF)inturbine-enginecomponentshasbeenidentifiedasoneofthemajorchallengesfacingthereadinessoftheUSAirForcefleettoday.1±3Inordertoaddressthisissue,aconsortiumofindustrial,governmentandaca-demicinstitutionshasbeenchargedwiththetaskofmodifyingtheexistingdesignmethodologiesforim-provingtheHCFreliabilityofthesecomponents.4Onecriticalissueinvolvestheeffectsofmixed-modecyclic
Correspondence:R.O.Ritchie,DepartmentofMaterialsScienceandEngin-eering,UniversityofCalifornia,Berkeley,California94720-1760,USA.E-mail:RORitchie@LBL.gov
loadsÐthatis,thepresenceofbothtensileandshearloadingÐonthecriticalstatesofdamageforsuchHCFfailures.Indeed,therearemanyfatigue-criticallocationswithintheturbineenginewheresuchmixed-modecon-ditionsexistÐe.g.inthepresenceoffrettingfatiguecracksintheblade±dovetailcontactsection.5Theeffect-ivecrack-drivingforceherecanbeconsideredtobeacombinationofthetensile(modeI)stress-intensityrange,DKI,thein-planeshear(modeII)stress-intensityrange,DKII,and/ortheantiplaneshear(modeIII)stress-intensityrange,DKIII.Fromtheperspectiveofprevent-ingHCFfailuresinturbineengines,itiscriticalthatfatiguecrack-growththresholdsarewell-characterizedforsuchloadingconditions,astheextremelyhighcyclicfrequencies($1±2kHz)involvedcanleadtoveryrapid
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606587
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
588R.K.NALLAetal.
failures,inwithoverthreemillioncyclesbeingaccumulatedmodelessmodeloadingthananconditionshour.Moreover,hasbeenthereportedpresenceofmixed-alloysTodate,Ifatiguestudiesthresholdstoreducetheon(e.g.Ref.[6]).
ofandTi-6Al-4VhavelargelyfocusedtheHCFonabimodalperformancemicrostructureofenginethecompressors,anina theballoytypicallyusedinfandiskspropagation,engine.Infront,low-temperaturestagesofiuminthecontextofmixed-modefatiguecrackthe(Ti)alloysinadditiontheliterature,toafew7±9earlierreportsontitan-Ti-6Al-4Vonlyresultsthesealloy.onInmixed-modeRefs[10±12]providethepresentwork,thresholdsweseekinatobimodalextendtureearlierobservationstoafullylamellarmicrostruc-ofSpecifically,theseinthetwosamemicrostructuresalloyandtocompareintherelativemeritsmodeofthicknesslargefatiguethe(>4thresholdsroleofcracksizemixed-modefatigue.mm)andisinvestigatedininfluencingmixed-short($200throughmastudysurfacepure(tensioncracks,cracks(Doverandmicrostructurallysmallm)(through-<50mm)Karangeofmode-mixities,fromII/DKImaximumDK 0)topredominantlyshearII/DKI$load),7.1),fromandloadR 0.1±0.8.
ratios(ratioofminimumtoBACKGROUND
ThewithselectionofasinglemicrostructureinTi-6Al-4Vtaskinoptimalfailures.viewresistanceofthenumeroustohigh-cyclefactorsfatigueisacomplexmanyfatigueTiForalloysexample,oftencoarseinfluencingHCFpossesslamellarmicrostructuresincrackstures;ascrack-growthcomparedtobehavioursuperiorinthepresencetoughnessoflargeandtigue-enduranceconversely,theythefinerequiaxedmicrostruc-growthstrengthscandisplayandlowerhigh-cyclefa-turalForthebehaviourpurposeof(e.g.thisRefsstudy,[13±15]).
inferiorsmall-cracktwocommontheconditionsofTi-6Al-4VareinvestigatedÐnamely,microstruc-bcoarse-grainedlamellarstructuresconsistingoflargealternatinggrains(diameterinaandbplates$1mm)(producedandalamellarmatrixofslowthebimodalcoolinghigh-temperaturebstructuresintotheb-phasefieldbyandheatsubsequenttreatment(produceda bphasebyfastfield)coolingandthefromfinerwidth-phasecharacterized$1field)mm).withindividualorientatedaplates(platetheabyWhilelargelamellaracoloniesstructures(apacketare,inofgeneral,aligned200±400platesofmwithminsamesize),crystallographicbimodalstructuresorientation,oftenconsistaboutaamatrixgrainslow-volume($20mfraction(typically$15±30%)ofprimary($20±40ofmalternatingminm).ForTi-6Al-4Vaandsize)bwithplatescolony-typeandotherwithinasmalllamellar bTiballoys,
grainsfatiguetures(e.g.generallyRef.iscrack-propagationwell-characterizedbehaviour[13±21]).Crackpropagationforpureinsuchmodemicrostruc-intheaIphaseloadingisperpendicularparalleltothetotheorientation(0001)basaloftheplane21alamellae.andhence22,23Thelarsuperiorcrack-growthresistanceexhibitedbynaturestructuresthresholdoftoregime.thehascracktrajectory,beenattributedtothiscrystallographiclamel-Asthecrackpathespeciallydiffersinfromthecolonynear-out-of-planecolony,significanttodeflectioncrack-pathandsecondarytortuositycracking,resultsfrommixed-modeAlthoughenhancedsimilarcrack-tipexplanationsshielding.
leadinghavebeenproposedforTi-6Al-4Vmicrostructure,12therefatigueiscrack-propagationlittleinformationonbehaviourinmayinthesealloys,oronhowthecracksizeroleofworkisaffectmixed-modetoexaminethisrole.Theprimeobjectiveofthepresentsize,fatiguethethresholdseffectofmicrostructureasafunctionofonsuchlamellarspecificallymicrostructuresthroughinaTi-6Al-4Vstudyofbimodal.
andcrackfullyEXPERIMENTALPROCEDURES
Materials
The4VTalloy,materialwhichinvestigatedoriginatedwasasaturbine-engineTi-6Al-foreledynegram.theTitanium(Pittsburgh,barPA,stockproducedUSA)specificallybyTheThejointcompositiongovernment-industry-academia(inwt.%)isgiveninHCFpro-sectionedoriginalbarstock(63.5mmindiameter)Tablewas1.940plates.8Cforinto30minsegments400mmlong,preheatedto1h,fanTheseair-cooledplatesandforgedinto400Â150Â20mmandwerethensolution-treatedstabilizedat700at8925Cfor8C2forh.Bimodalmicrostructure
Thebimodalas-receivedtreatedconditionmicrostructure(sometimesreferredofthealloytoaswasintheof(Fig.equiaxedandoveraged,(standard1a).TheprimaryaSTOA),andlamellarandaconsisted b(transformedofsolution-coloniesb)of$20mm,deviationproportionslightly6.6%),elongatedwithofprimaryinantheaverageawas64.1%longitudinalgrainsize(L)
Table1ChemicalcompositionofTi-6Al-4Vbarstock(inwt.%)23BarlocationTiAlVFeONHTopBal.6.274.190.200.180.0120.0041Bottom
Bal.
6.32
4.15
0.18
0.19
0.014
0.0041
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
directionanalysis,990±1005theof8C.bthe-transusforging.24temperatureUsingdifferentialwasmeasuredthermaltobeLamellarmicrostructure
Forobtainedcomparison,À610±30mbarbyatsolutionafully10058treatinglamellarinamicrostructurevacuumof10Àwas510Àbyheliumaminrapid(dependingC(slightlyquench($on100theabovetheb-transus)for8Ccrosssection),followedachieve(He);bimodalasimilarthetransformedquenchratebwasminÀ1)inhigh-puritylathchosenspacinginasorderto700ambient8Cforstructure.temperature2hinvacuoThe.,beforealloyTheresultingslowlywasthenfurnacestabilizedintheWidmanstacoolingtoatÈtten
(a)
(b)
Fig.1Opticalmicrographsofthetwomicrostructuresof
Ti-6Al-4Vinvestigated:(a)bimodal(solution-treatedandoveraged,STOA)and(b)lamellar(b-annealed).Etchedinto$10secin5parts70%HNO3,10parts50%HF,85partsofH2O.
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
EFFECTSOFMICROSTRUCTUREONTI-6AI-4VALLOY589
microstructuregrainasizeof$1(Fig.mm,1b)ahadanaverageprior-b
lamellae-phasemellarlathlamellae)widthofof$$colony1±2500mmm,sizeand(parallelanaverageorientatedamicrostructure.
spacingofthetransformedm,similarbintothethebimodalinterla-Uniaxialtensileandtoughnessproperties
Uniaxialstructurestensile5tureÂ10À4sÀin1thetestsL-orientationwereconductedusingainstrainbothratemicro-ofstrength,wereandductilitytaken;additionalfromdataforthebimodalmicrostruc-andRef.toughness[23].Resultsintermsofthewhatshowahigherthatstrength,whereasthethearelistedinTable2,bimodallamellarstructurestructureexhibitshassome-overgrainfactoroffourhigherductility(owingtoitssmallerdespitesizehasoveritsthat50%lowerlimitstheeffectivesliplength).However,higherductility,plane-strainthelamellarfracturemicrostructuretoughness.Fatiguetesting
Largethrough-thicknesscracks
Largein(>4mm)fatigue-thresholdtestinginnerfour-pointbending,using6mmthicksampleswasperformedwithPurepointmodeandouterspansof12.7and25.4mm,ponentbending.ItestsasymmetricoftheForwereloadingmixed-modeconductedusingsymmetricfour-wasintroducedloading,theusingmodetheIIation25±28beshownvariedwherefour-pointusingthethemode-mixitybendingoffset,s,fromratio,(AFPB)theDloadKconfigur-II/Dline,KI,canasrange,inwereDKFig.2.ThevaluesofmodeIstress-intensityI,andmodeIIstress-intensityrange,DKII,tionsdeterminedHutchinson.forthis28
geometry,fromlinear-elasticrecentlydevelopedstress-intensitybyHesolu-andnear-identicalPrecrackingwasconductedinroomsamplesinordermannertoforavoidallanylarge-effectandtemperatureshort-cracktestairinaofprecracking
Table2UniaxialtensileandtoughnesspropertiesofTi-6Al-4V
UltimateFractureYieldtensiletoughnessstrengthstrengthReductionKMicrostructure(MPa)(MPa)inarea(%)(MPaIc
Hm)Bimodal9309784564Lamellar
975
1055
10
100
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
590R.K.NALLAetal.
Fig.2Theasymmetricfour-pointbendspecimen.Theoffset,s,fromtheloadlineisusedinordertocontrolthedegreeof
mode-mixity,DKKII/DKI,andtherebythephaseangle,b tanÀ1(DII/DKI).Thisgeometryisusedforthemixed-modelargeandshortcracktesting.
techniqueally,trodeposition-machinedfatigueoncrackssubsequentweregrownthresholdsfromobtained.a2mmdeepSpecific-elec-notchload(Thisratioinaofsymmetric(EDM)through-thickness0.1withfour-pointaconstantbendingloadingsamplefrequency.ataininroomalloylarthebimodalair,isspecificallyknowntoshowlittleeffectoffrequencystructure20overandtherangeof50±20000Hzcrack-lengthstructure22).Thesurfacesof50±1000allsamplesHzinthelamel-finish,bearingwhereasobservationthewerepolishedtorequireda0.05mformeffectpinofpinsfrictionwerebetweengroundsidestothetobeausedtocarrytheload-specimen600gritandfinish.theAsroller-thevalues,supports25contactfrictionalcansubstantiallyeffectswereaffectminimizedthestress-intensityatMoSpositionsthroughtheuseofahigh-pressurethepin-was2grease.The4.8bimodal+4.500.5+and0.256.8mmfinal+0.5atprecracklengthMPanear-thresholdHm,respectively,DthusKachievedIvaluesfortheofvariedForlargeandDfromcrack(lamellarDKD>microstructures.
K4mm)tests,mode-mixitieswereII/I 0(puremodeinKI)toDKII/ILoadphase$7.1angle,(nearlybpure tanmodeÀ1(DII),KrepresentingachangeII/DKI),from0to828.ingmixitycyclingratioswereprecrackedvariedspecimensfromR 0.1±0.8.Testsinvolv-growthwereperformedinthefollowingataspecifiedway:ifnomode-2$Â106wascycles,observed(usinganopticalmicroscope)crackafteringly0.25repeated.toMPaeitherDKIorDKIIwasincreasedbymaintainHm(withthethemode-mixity)otherbeingandincreasedaccord-boundingInextensionofdefiningthethisactualway,`growth'thresholda`growth/nogrowth'theprocedureconditionwaswastakenobtained.tobeofThetheordercrack$lamellar20themmcharacteristicforstructure,thebimodalmicrostructuralyieldingstructuredimensionÐthatis,thresholdand$growth500mmratesfortheof
notch
(a)
(b)
µm
precrack
Fig.3Theprocedureusedforremovingthecrackwakeofalargecrackinordertoproduceashortcrackisillustrated.
10À10À10À11forsamplingthelamellarmcycleÀ1structure.Thealsolargerserved`growth'toensureconditionadequatecomputingThemagnitudeoftherelativelyboththeeffectiveoftheheterogeneousmicrostructure.(near-tip)crack-tipcrack-drivingshieldingÐusedforceforindevelopedmodesIandIIÐwascharacterizedusingarecentlyopeninggaugesandcompliance-basedshear-typeloading,techniqueusingforbothtensileandmountednearthecracktiptotwomeasuredisplacementopeningRef.shearshielding[11],displacements.Asdescribed,indetail,inseparateinthecrack-tipload-displacementmodesdistinctionIandIIbetweenwasthecontributionstocurvesachievedusingbyexaminingclosure,gauges.ModeIshielding,intheformthesetwoforationthewasdeterminedfromthecomplianceofcrackcurveshielding,fromopeningasperityinlinearitydisplacementstheformonfromthefirstdevi-ofunloading,crack-surfacewhereasmodeIIanalogousrubbingandinterlock,wasdeterminedinterferenceinviaandisplacements.
fashionfromthecompliancecurveforshearShortthrough-thicknesscracks
Inmodeorderthrough-thicknessfatiguetoexaminethresholds,theinfluencethebehaviourofcracksizeoflargeon(mixed-shortcrackswascomparedwith>those4mm)of(($200mm)through-thicknesscracksandsmallof<50Appendixthesemm)typessurfaceofcracks.flawsThearedistinctiondiscussed,andindetail,relevanceinmeasuredMixed-modeA.
thresholdtestsontheshortcrackswereproceduresoncracks,identical6±12mmthickfour-pointbendbars,usingchinedexceptawaytothatwithinthetothosedescribedaboveforlarge$precrack200mmwakeofthewascracktipcarefullyusing
ma-a
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
EFFECTSOFMICROSTRUCTUREONTI-6AI-4VALLOY591
slow-speeddiamondsaw(Fig.3).Therationaleforthisprocedureofremovingmostofthecrackwakewastolimittheeffectofcrack-tipshieldingbyminimizingtheoccurrenceofanyprematurecontactofthecrackfacesduringunloading.However,astheshortcrackswerethrough-thickness,theystill`sampled'thecontinuummicrostructureÐthatis,typicallybetween30and300grains.Thresholdsweremeasuredinbothmicrostruc-turesatloadratiosofR 0.1±0.8formode-mixitiesofDKII/DKI 0toDKII/DKI$7.1(i.e.b 0±828).Smallsurfacecracks
Mixed-modethresholdsformicrostructurallysmallsurfacecrackswereperformedusinganinclined-cracktechnique.Widebendbars(16±25mmwidth,5mmthickness)weremachinedintheL±Torientation,withthesurfacesrequiredforobservationpolishedtoa0.05mmfinish,andthesidesusedtocarrytheload-bearingpinsgroundtoa600gritfinish.Astress-relieftreatmentof2hat6958Cinvacuowasusedinordertominimizeanyresidualstressesfrommachiningandspecimenpreparation.A`precrack'wasnaturallyiniti-atedatthestressofsmax 750MPaÐthatis,$80%ofyieldstrengthÐusingstandardthree-pointbending(withaloadratioof0.1andafrequencyof50Hz).Inordertoenablemeasurementofthesmall-crackthresholds,abendbarwascarefullymachinedoutfromtheoriginalprecrackedwidebarwiththecrackinclinedatthedesiredangle(Fig.4).Thissamplewassubsequentlysubjectedtofour-pointbendingbycyclingataloadratioof0.1.Ifnogrowth(definedasatotalcrackextensionoflessthan20mmper2Â106cyclesonbothendsofthesurfacecrack)wasobserved,themaximumload(andproportion-atelytheminimumload)wasincreasedby111Nandtheabove-mentionedprocedurewasrepeated.Thresholdswerethusagaindeterminedusinga`growth/nogrowth'criterion,butforthebimodalmicrostructureonly.Theinclined-cracktechniquecouldnotbeusefullyemployedforthelamellarmicrostructureasaresultofthehighlydeflectednatureoffatiguecrackinginthisstructure.Linear-elasticsolutionsforthestressintensitiesassoci-atedwiththesmall,semiellipticalsurfacecracksundermixed-modeloadingweretakenfromtwosources.On
(a) wide bend bar specimen (b) small ‘inclined crack’ specimen
Fig.4Schematicshowingtheproceduresutilizedforobtainingthesmall`inclinedcrack'specimen.(a)Thedottedlinesoutlinethesmall-cracktestsampletobemachinedatthedesiredangleofinclination,ffromtheoriginalwidebendbar.Thenominaldirectionofloadingforcrackinitiationisalsoshown.(b)Thefinal`inclinedcrack'specimenisillustrated.(c)Schematicoftheinclinedsemiellipticalsurfacecrack
configurationusedforthemicrostructurallysmall-cracktesting.Thetensileloadingcomponent,s22,inducesthemodeIcontribution,whereastheshear-loadingcomponent,s12,inducesthemodeIIandmodeIIIcomponents.
(c) mixed-mode small crack testing
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
592R.K.NALLAetal.
thesurface,basisthatthecrackplanewasnormaltothewassolution:computedthemodeIcomponentofthestressintensity,specimenKI,29fromthewell-knownNewman±Rajur KI st Hsb
paF a;ac ;;y 1
wherethemetricalremotestisuniformtheremoteouter-fibreuniformbendingtensionstress.stressTheandsgeo-biscrackdepth,factorsÐthickness,positiont;thea;specimentheH,crackhalf-length,QandFÐareevaluatedfrom:thehalf-width,b;cand;thethespecimenangularRef.alongthecrackfront,y,asdescribedindetailinfromThe[29].
modeellipticalthesurfacenewlyIIcomponent,derivedcracksunderHe±HutchinsonKII,conversely,wasmixed-modesolutioncomputed30loading:forKII ws12p
pa
2
whereswisanumericalfactordeterminedfromRef.[30];crackdepth.12isthesheardimensionalItcomponentshouldbeofnotedtheloadingherethatandaathree-isthethecornersingularityexistsinthesolutionatHowever,pointwherebecauseforthethepurposecrackintersectsofthisstudy,withthefreesurface.gible.theMoreover,errorscausedasonebysuchanassumptionthisisareignorednegli-decreasesinterior,themagnitudemovesofthealongmodetheIIcrackfrontcontributiontodeepestpenetrationwiththatofofmodethecrackisIIIincreasingtillthepointofwasThecomponents.resolvedappliedload/stresstrigonometricallyontheinclinedreached.
intotensilecrack(Fig.and4c)miningDDKThetensilecomponentwasusedfordeter-shearI,usingsmallKRef.[29]andtheshearcomponentforIIandwithsurfaceDKIIIcracks,usingandRef.the[30].variationAstheexactshapeofsuchonbehaviour,thecrackextensioncrack-drivingclearlycanhaveaninimportantthisaspecteffectratio31,32depth-to-surfacecrackshapesforceandhencethecrack-growthpostfracturelength(Fig.4)Ðintheformofthea/2c$0.45.
observations;ratio,thea/2ctypicalÐwereaspectdeterminedratiowasbycharacterizingTheuseoflinear-elasticjustifiedthedrivingforcesstress-intensityforthesmallsolutionscracksforincracksizesrelationontheto$ofcracksize.basisofthesmallcyclicplastic-zonesizesis$1mm,whereForexample,theDKforthesmallest(orderD1KMPamÀ1,plastic-zonesize(estimatedIthresholdsasrarey$1/2pI/sy)2wherescracksize,of100nm.Asyisthistheisyieldstrength)areonthesmall-scaleyieldingitisdeemedroughlyone-tenthoftheconditionsreasonableprevail.
toconcludethatRESULTS
Large-crackbehaviourEffectofloadratioandmode-mixity
LargemicrostructurescrackthresholdsFig.undermodeforIthe IIbimodalloadingandareshownlamellarwhere5inDthethemodeformofinIImixed-modethresholdthresholdenvelopes,modeKplottedasafunctionstress-intensityofthecorrespondingrange,II,TH,isthatwhicheachIthresholdthresholdstress-intensityisrepresentedrange,bytwoDKI,TH(noteTheloadphaseindicateanglestheinvestigated`growth'anddatapoints,were`nogrowth'conditions).offollowing0.8ratiosforofobservationsboth0.1andstructures.0.5,andcanbeBased0,26and0,26,62and828formade:
onthese628atresults,aloadratiothe.Akintobehaviourinmostmetallicalloys(e.g.Refs[8±9,33±35]),areductioninthefatiguethresholdvaluesisclearlyevidentforbothmicrostructureswithincreasingloadratio.TheslightincreaseinthemodeIthreshold,DKI,TH,withincreasingmode-mixityatlowphaseangles,observedinthepresentdataatphaseanglesbetween0and268,hasbeenattributedtotheeffectofmodeI/modeIIcrack-tipshielding.10±12
.ThemodeIthreshold,DKI,TH,clearlydecreaseswithincreasingmode-mixity.However,ifamoreappropriatedrivingforceÐincorporatingbothmodeIandmodeIIcomponentsÐisusedinordertocharacterizethethresh-old,specificallytherangeinstrain-energyreleaserate,DG (D(KI2 DKII2)/E'whereE' E(EisYoung'smodulus)inplanestressandE/(1-n2)inplanestrain(nisPoisson'sratio),thenthereisaprogressiveincreaseinthemixed-modeDGTHfatiguethresholdwithincreasingmode-mixityinbothmicrostructuresforallloadratiosstudied(Fig.6).Thiscanalternativelyberepresentedintermsofanequivalentstress-intensityfactorrange,DKeq,TH (DGTHE')1/2,whichisalsoplottedinFig.6.Notethatinthisandallsubsequentfigures,thresholdvaluesarerepresentedbyasingledatapointshowingtheaveragevalueofthe`growth/nogrowth'conditions.Analternativemeansofcalculatingthemixed-modethresh-oldsisbrieflydescribedinAppendixB.
.Fromtheperspectiveofthresholdsforhigh-cyclefatigueinTi-6Al-4V,theresultsinFig.6stronglyimplythatdespitethepresenceofmixed-modeloading,themodeIthreshold,definedintermsofthestrain-energyreleaserate,DG,forcrackslargecomparedtomicrostructuraldimensions,representsaworst-caseconditionfortheonsetoffatiguecrackgrowthundermodeI IIloadingforbothmicrostructures.
.Thoughbothmicrostructuresshowedmixed-modeDGTHthresholdsthatincreasedsubstantiallywith
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
EFFECTSOFMICROSTRUCTUREONTI-6AI-4VALLOY593
KI,TH (ksiVin)
(a)
10
Mode II stress-intensity range at threshold
KII,TH (MPaVm)
8
6
8
6
4
4
2
2
(b)
10
Mode II stress-intensity range at threshold
8 KII,TH (ksiVin)
KII,TH (MPaVm)
8
6
6
4
4
2
2
Fig.5Mixed-modethresholdenvelopesfor
large(>4mm)through-thicknesscracksinthe(a)bimodaland(b)lamellar
microstructures.Notethatthelamellarstructureshowssuperiorresistancetocrackpropagation,particularlyatthelowerphaseangles.
0Mode I stress-intensity range at threshold
KI,TH (MPaVm)
increasingmode-mixity,ingeneralthelamellarstructurewasobservedtoexhibitthehigherthresholdvalues.However,thebetterfatigueresistanceofthelamellarstructurewasmarkedlyreducedathighmode-mixities,asisevidentfromthelarge-crackthresholdvalueslistedinTable3(thedifferencebetweenthethresholdsforthetwomicrostructuresisincludedinparenthesesforthepurposeofcomparison).Clearly,thesuperiorfatiguecrack-growthpropertiesofthelamellarstructureatlowmode-mixities(b 0and268)arenearlyeliminated,orinsomecasesreversed,whensignificantmodeIIloadingispresent(b 62and828).
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
KII,TH (ksiVin)
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
594R.K.NALLAetal.
(a)
11
Threshold strain-energy releaserate range, G TH ( J/m2)
Threshold equivalent strees-intesityThreshold equivalent strees-intesity
10
9
8
76
53
1020304050608011
Phase angle, b (8)
(b)
10
Threshold strain-energy releaserate range, G TH ( J/m2 )
987
range, K eq,TH (MPaVm )
range, K eq,TH (MPaVm )
653
Fig.6Thethresholdstrain-energyreleaserate,DGTH,isplottedasafunctionofphaseangle,b,forthe(a)bimodaland(b)lamellarmicrostructureforlargecrackssubjectedtomixed-modeloadingatR 0.1,0.5and0.8.Equivalentstress-intensityrangesatthreshold,DKeq,TH,forboth
microstructuresarealsoshown.The
lamellarmicrostructure,ingeneral,showssuperiorresistancetofatigue-crackpropagation,althoughthedifferenceisreducedathighmode-mixities.
Roleofcrack-tipshielding
AsdiscussedinRefs.[10,11]forthebimodalstructure,theincreaseinthelarge-crackmixed-modethresholdswithincreasingmode-mixitycanbedirectlyrelatedtoanincreasedroleofmodeIandmodeIIcrack-tipshielding,associatedwith,respectively,crackclosureandslidingcrackinterference(frictionandinterlockofcrack-surfaceasperities).Thiscanbeappreciatedbyquantifyingthemagnitudeofsuchshieldinginordertodetermineamixed-mode,effectivestrain-energyreleaserate,DGeff,andthen`correcting'thelarge-crackthresholddatainFig.6forsuchshieldingbycharacterizingintermsofDGeff.Theeffective(near-tip)strain-energyreleaserate,DGeff,canbedefinedas(DKI,eff2 DKII,eff2)/E',whereDKI,effistheeffectivestress-intensityrangeinmodeIandDKII,eff
isthecorrespondingeffectivestress-intensityrangeinmodeII.Inthepresentwork,DKI,effwasdeterminedintheusualfashionusedinordertomeasurecrackclosureÐthatis,intermsofKI,max±Kcl,whereKclistheclosurestressintensitydefinedatthefirstdeviationfromlinearityofthecrack-tipload-displacementcurveonunloading.Ontheotherhand,DKII,effwasmeasuredasthedifferencebetweenthenear-tipmaximumandmin-imummodeIIstressintensitiesinthefatiguecycle.Thenear-tipmodeIIstress-intensityrangediffersfromtheapplieddrivingforceasaresultofthepresenceofshear-inducedfracture-surfaceasperitycontactandinterlock.FurtherdetailsonthedeterminationofDKI,effandtheestimationofDKII,effusingcompliance-basedtechniquescanbefoundinRef.[11].
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
EFFECTSOFMICROSTRUCTUREONTI-6AI-4VALLOY595
(a)11
10
Threshold equivalent strees-intesityThreshold equivalent strees-intesity
range, K eq,TH (MPaVm )range, K eq,TH (MPaVm )
Threshold strain-energy releaserate range, G TH ( J/m2 )
9
87653
0Phase angle, b (8)
(b)
11
10
Threshold strain-energy releaserate range, G TH ( J/m2)
9
87
6
53
0Fig.7Thethresholdstrain-energyreleaserate,DGTH,isplottedasafunctionofphaseangle,b,forthe(a)bimodaland(b)lamellarmicrostructureforlargecrackssubjectedtomixed-modeloadingatR 0.1,0.5and0.8.ResultsfromFig.6arecomparedwiththeDGTH,effvalueswhichhavebeencorrectedforcrack-tipshielding.Notetherelativeabsenceofanyeffectofmode-mixityand/orloadratioontheshielding-correctedthresholds.
Phase angle, b (8)
BysocharacterizingthedrivingforceintermsofDGeffbysubtractingoutthecontributionsfromcrack-tipshielding(individualDKIandDKIIvaluesarelistedinTables4and5),theeffectofmode-mixityonthethresholdisfoundtobegreatlyreducedforbothmicrostructures.ThiscanbeseeninFig.7wherethe`shielding-corrected'DGeff,THthresholds(plottedashatchedregions)arecomparedwiththe`uncorrected'dataofFig.6.Severalpointsareworthyofnote:
.Theshielding-correctedDGeff,THthresholdvaluesaresubstantiallysmaller(byasmuchasafactoroffour)thantheuncorrectedDGTHvalues,especiallyathighphaseangles.
.Mixed-modethresholdvaluesareessentiallyindependentofbothloadratioandmode-mixity.WhileitisgenerallyappreciatedthattheeffectofloadratioonmodeIthresholdvaluesislargelyassociatedwithcrackclosure(e.g.Refs[19,20]),theseresultsconfirmearlierreportsforthebimodalstructure10,11thattheeffectofmode-mixityinincreasingtheDGTHthresholdinTi-6Al-4Vcanbeprincipallyattributedtoanincreaseincrack-tipshielding(mainlyfromenhancedcrack-surfaceinterference).
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
596R.K.NALLAetal.
Table3FatiguethresholdvaluesforlargefatiguecracksinTi-6Al-4V
DGTH(JmÀ2)
Mode-mixity
R 0.1
Bimodalmicrostructure:08200268280628410828850LamellarmicrostructureÃ:08320( 60%)268395( 41%)628450( 10%)828815(À4%)
Ã
DKeq,TH(MPaHm)
R 0.5
R 0.8
R 0.1
R 0.5
R 0.8
80
150375575
170( 113%)255( 70%)345(À8%)660( 15%)
80100320±
110( 38%)165( 65%)305(À5%)±
4.95.87.010.16.26.97.49.9
3.14.36.78.34.55.56.58.9
3.13.56.2±3.64.56.1±
ThenumbersinparenthesesindicatethedifferencebetweenthemagnitudesoftheDGTHthresholdofthelamellarstructureascomparedtothebimodalthreshold.
Table4Comparisonoftheappliedandshielding-correctedmodeIstress-intensityranges
DKI,THDKI,TH,effReductionin
LoadratioMode-mixity(MPaHm)(MPaHm)DKI(MPaHm)ÃBimodalmicrostructure:0.108
628828
0.508
628828
0.808
628Lamellarmicrostructure:0.108
628828
0.508
628828
0.808
628
Ã
Table5Comparisonoftheappliedandshielding-correctedmodeIIstress-intensityranges
DKII,THDKII,TH,effReductionin
LoadratioMode-mixity(MPaHm)(MPaHm)DKII(MPaHm)ÃBimodalmicrostructure:0.1628
828
0.5628
828
0.8628
5.0
3.61.53.33.31.23.23.16.53.61.44.63.11.33.92.9
4.72.80.63.31.70.03.22.34.62.20.84.32.80.53.72.5
0.30.80.90.01.61.20.00.81.91.40.60.30.30.80.20.4
(6%)(22%)(60%)(0%)(48%)(100%)(0%)(26%)(29%)(39%)(43%)(7%)(10%)(62%)(5%)(14%)
6.510.46.08.65.63.94.84.65.35.05.26.63.86.22.9
2.6(40%)5.6(54%)1.4(23%)3.3(38%)0.6(11%)1.5(22%)3.5(35%)2.0(35%)2.9(32%)2.6(47%)
Lamellarmicrostructure:0.16286.7
82810.1
0.56285.8
8289.1
0.86285.5
Ã
ThenumbersinparenthesesindicatethepercentagereductioninDKIIowingtocorrectionforcrack-tipshielding.
ThenumbersinparenthesesindicatethepercentagereductioninDKIowingtocorrectionforcrack-tipshielding.
Crackpathandfractography
Akintofatiguecrack-growthbehaviourinpuremodeIinthepresenceoflargecracks,22thelamellarmicrostruc-turedisplayssuperiorcrack-growthresistanceundermixed-modeloadingcomparedtothebimodalstructure.Thiscanbeattributedtothelargedegreeofcrack-pathdeflection,bifurcationandsecondarycrackformationassociatedwithcrackgrowthinthelamellarstructure.TypicalcrackpathsareillustratedinFig.8forbothmicrostructures,andshowthepuremodeIprecrack(grownatR 0.1)andsubsequentcrackgrowthunder
.Thesuperiormixed-modefatiguethresholdpropertiesofthelamellarmicrostructurearesubstantiallyreducedwhenresultsareplottedintermsofDGeff,suggestingthatthisisalsoassociatedwithhigherlevelsofcrack-tipshielding.Thisisconsistentwiththesignificantlymoretortuouscrackpathsobservedinthelamellarstructure,whichwouldpromotecrack-surfaceinterference,asdis-cussedinthefollowingsection.
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
EFFECTSOFMICROSTRUCTUREONTI-6AI-4VALLOY597
400µm
qMTS =39.7
qexp ~39
Mode I
b applied = 26
(a)
200µm
qMTS =60.8
Fig.8Typicalfatiguecrackprofilesarecomparedforthe(a)bimodal(R 0.8,b 268,DGTH 100JmÀ2)and(b)lamellar(R 0.1,b 628,
DGTH 450JmÀ2)microstructures.
OpticalmicrographsshowboththemodeIfatigueprecrackandtheregionofdeflectedcrackgrowthfollowingtheapplicationofcyclicmixed-modeloading.Measuredcrackdeflectionangles,yexp,arecomparedwiththosepredictedbythepathofmaximumtangentialstress,yMTS(seeRef.[12]).
qexp ~37
(b)
Mode I
b applied = 62
mixed-modeloading(atR 0.8withDKII/DKI 0.5forthebimodalstructureandatR 0.1withDKII/DKI 1.9forthelamellarstructure).Thereisclearlyasubstantialdifferencebetweenthetrajectoriesofcracksinthetwostructures.Thisisevident(i)inthecrackpathespeciallyduringmodeIcrackgrowth,wherethelamel-larstructureshowssubstantiallyhighertortuosityowingtointeractionofthecrackwiththemuchcoarserlamellarmicrostructureÐwithcharacteristiclengthscalesof$500mmÐand(ii)inthecrackdirectionattheonsetofmixed-modeloading,asdiscussedbelow.
Thecrack-pathdirectionisdeterminedthroughacom-petitionbetweenthemaximumcrack-drivingforceandtheweakestmicrostructuralpath.Infine-scale,homoge-neousmicrostructures,suchasthebimodalmicrostruc-ture(wherecharacteristiclengthscalesare$20mm),thecrack-drivingforcebecomesthedominantfactor.Fornominallyelasticconditions,thepathofagrowingfatiguecrackwillchangeinresponsetoachangeintheappliedphaseangle,sothatapuremodeInear-tipconditionismaintainedÐthatis,thecracktipfollowsapathdictatedbyeitherazeromodeIIstressintensity(KII 0),maximumtangentialstress(MTS),ormax-imumstrain-energyreleaserate,Gmax36,37Ðallcriteriathatyieldessentiallythesamecrack-pathpredictions(exceptatveryhighphaseangles).Accordingly,cracksinthebimodalstructuredeflectundermixed-modeloadingtofollowamodeIpath,asillustratedinFig.8awherethecrackdeviatesalmostexactlyalongthepathofmaximumtangentialstress.Forthecoarselamellarstruc-ture,conversely,Fig.8bshowsthatthecrackdoesnotdeflectalongthemaximumtangentialstressdirectionattheonsetofthemixed-modeloading;here,thecharac-teristicmicrostructuraldimensionsarefarlarger,sothatthecrackpathonthisscaleofobservationcannotbede-scribedbycontinuumnotionsandismarkedlyinfluencedbymicrostructure.SimilardeviationsfrompredictedmodeIcrackpathsundermixed-modeloadinghave
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
598R.K.NALLAetal.
CRACK - PROPAGATION DIRECTION
Fig.9Typicalfractographyformixed-modefatiguecrackgrowthinthe(a)bimodal(DGTH 410JmÀ2)and(b)lamellar
microstructures(DGTH 450JmÀ2).Bothspecimensweretestedatloadratio,R 0.1,andphaseangle,b 628.Themuchcoarserlengthscalesinvolvedforthelamellarstructureareevident.
beenturesobservedforcoarse-grainedcracksinacantitaniumfollowaluminidelamellarmicrostruc-aintermetallics,wherefatiguesurfacesAllsinglepreferentialinterlamellarpathwithintheselargewith(Fig.factorscolony.38
9)inresulttheinlamellarsubstantiallymicrostructure,rougherfracturewhichthroughlargeloading,prematurecrackspromotescrack-surfacebothasperitymodeIcontactcrackclosure,enhancedandslidingasperitymodeIIonun-rubbingcrack-surfaceandinterference,throughsuchandsignificant5,closurecrackfaces.Measurementsinterlockingofthemagnitudewithintheofprovideandexperimentalsurfaceinterference,confirmationlistedinTables4lamellarthismicrostructurestructure;roleofthiscrack-tipshieldinginofthethecoarsermoredisplaysprovidessuperiortheresistancemainreasonto(large
whycrack)fatiguefatiguemixed-modethresholdcrackloadingvaluespropagation,conditions.underbothwithpurehighermodemeasuredIandShort-crackbehaviour
Corresponding(mixed-modeDGTHlamellar$200mm)plottedstructuresthrough-thickness(atb 0±82cracksthresholds8andinRtheforshort bimodal0.1±0.8)andareasafunctionofthephaseangleinFig.10;areuncorrectedcomparedfromandwithshielding-corrected)thecorrespondingthresholdsresultsforlarge(bothshieldingFig.7.Asnotedabove,theeffectofcrack-tipcracksthefrictionpresenceintheofcrackwakshearloadingeisparticularlysignificantinowingatedDGwithtoandtheinterlockingofasperities.owing39±41toConsequently,crack-surfacethresholdscracksminimalofwere:
limitedroleofwake,crack-tipmeasuredshieldingshortassoci-crackTH.substantiallylowerthanthecorrespondinglarge-crackvalues(similartoresultsformodeIthresholds22),
.essentiallyinsensitivetothedegreeofmode-mixity,inmarkedcontrasttothelargecrackthresholds,and
.relativelyinsensitivetotheloadratio,againincontrasttolargecrackresults.
listedMoreover,theshort-crackthresholdvalues,whicharebandingforinTable6,wereobservedtoliewithinthescatter-conditions,that,shielding-correctedsimilartoobservationslargecracks,underagainpureindicat-isresponsiblethelimitedeffectofshieldingforshortmodecracksItionWithrespectfortotheirtherolelowerofmicrostructure,thresholdvalues.
insubstantiallytermsbetweenofthethebimodalandlamellarmicrostructuresthedistinc-forreducedmixed-modeforshortcrack-growthcrackscomparedresistancetothatiseffectlargeoldsofmicrostructurecracks.Thisagainonimpliesthattheprimarycrack-tipinTi-6Al-4Varisesthroughmixed-modethefatiguemechanismthresh-ofrestricted,shielding.wake,asintheWherecasetheroleofsuchshieldingismodaldifferencesinfatigueofresistanceshortcracksbetweenwithlimitedthecant.loadingAnalogousandlamellarbehaviourstructurescanbecomemuchlesssignifi-bi-tieswherethesuperiorfatiguebecrack-growthseenundermodeproper-Iwhereoftheoncethelamellarstructurearelostathighloadratios,throughagain,effectmechanismstheofprimarycrackclosureofcrack-tiproleofbecomesshielding.microstructureinsignificant;22occursSmall-crackbehaviour
AmonlymoreencounteredrealisticflawÐininrealtermsstructuresÐisofwhatisthatmostofcom-the
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
EFFECTSOFMICROSTRUCTUREONTI-6AI-4VALLOY599
(a)
Threshold equivalent strees-intesity
Threshold strain-energy releaserate range, G TH ( J/m2 )
(b)
Threshold equivalent strees-intesity
Threshold strain-energy releaserate range, G TH ( J/m2 )
range, K eq,TH (MPaVm )
Fig.10Variationinmixed-mode
thresholds,DGTH,asafunctionofphaseangle,b,in(a)bimodaland(b)lamellarstructures.Shownareresultsatthreeloadratiosforlarge(>4mm)cracks,beforeandafter`correcting'forcrack-tipshielding,andforshort($200mm)through-thicknesscracks.Thelamellarmicrostructureshowssomewhatsuperiorresistancetocrackpropagationintheshortcrackregime.
Phase angle, b (8)
small,semiellipticalsurfacecrack,whichissmallinalldimensions.Likeshortcracks,suchcracksexperienceaminimaleffectofcrack-tipshieldingowingtotheirlimitedwake.InthepresentstudyonTi-6Al-4V,modeIDGTHthresholdsforsuchmicrostructurallysmall(<50mm)cracksinboththebimodalandlamellarstruc-turesarecomparedwithcorrespondingmixed-modelarge-crackdatainFig.11.Thresholdvaluesforthesmallcracksareclearlymuchsmallerthanthecorres-pondingvaluesforlargecracks.Indeed,smallcracksareobservedtopropagateatthresholdlevelsaboveDGTH 8.3JmÀ2(DKI,TH$1MPaHm),whereastheworst-caseDGthresholdforlargecracks,namelyDGTH 29.9JmÀ2(DKI,TH$1.9MPaHm),isafactorofthreelarger.
Microstructurally,againitisclearthatwhereasthelamellarstructurehassuperiorlarge-crackthresholdproperties,thisisnotapparentinthepresenceofsmallcrackswherethemodeIthresholdsarealmostidentical.Eventhesubsequentsmall-crackgrowthrates,shownasafunctionofDKIinFig.12fromaparallelstudyontheeffectsofforeign-objectdamageonhigh-cyclefatigueinTi-6Al-4V42revealfewdifferencesinthebehaviourofthebimodalandlamellarmicrostructuresÐobservations
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
range, K q,TH (MPaVm )
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
600R.K.NALLAetal.
whichcanberelatedtotheminimalroleofcrack-tipshieldingwithcracksoflimitedwake.
However,thebehaviourofthesmallsurfacecrackisdifferentfromthatoftheshort(andlarge)through-thicknesscrackinthemannerinwhichitstatistically`samples'themicrostructure.Inthepresentexperimentswherethesmall-crackdimensionswerecomparablewithcharacteristicmicrostructuralsize-scales,theircrackfrontscannotsamplethe`continuum'microstructure.Forexample,whereastheaverageshortcrackinthebimodalmicrostructurewould`sample'some300grains,
Table6ThresholdsobtainedforshortfatiguecracksinTi-6Al-4V
DGTH(J/m2)
DKeq,TH(MPaHm)
Mode-mixityR 0.1R 0.5R 0.8R 0.1R 0.5R 0.8Bimodalmicrostructure:0872662681251056287264828148140Lamellarmicrostructure:08159110268176131628180142828210145
thesmallcrackmerely`samples'oneortwograins.Data
onthebehaviourofsuchcracksundermixed-modeloadingareextremelylimitedalthoughpresentresultsforthebimodalstructure,atR 0.1only,areshowninFig.13andarecomparedwiththecorrespondinglarge-andshort-crackmixed-modethresholdvalues.Clearly,theadditionaleffectofmicrostructuralsamplingisevi-dentintheseresultsinwhichthesmall-crackthresholdscanbeseentobelowerthanthecorrespondingvaluesforshortcracksandshielding-correctedlargecracks.Whilethemarkedeffectofcracksizeonthemixed-modethresholdsuptonowhasbeenattributedtoadifferenceinthemagnitudeofthecrack-tipshielding,theevenlowermixed-modethresholdsformicrostructurallysmallcracksreflectthisadditionalfactorofthebiasedsamplingofthe`weaklinks'inthemicrostructurebythesmallflaw.Indeed,quantitatively,large-crackmixed-modeDGTHthresholdsinthebimodalstructureathighmode-mixitiesDKII/DKI 7.1canbesome$50±90timeslargerthansuchmeasuredsmall-crackthresholds.
DISCUSSION
59855213096119121125
2.93.92.94.24.44.64.75.0
2.83.62.84.13.64.04.14.2
2.73.22.54.03.43.83.83.9
Inthepresentstudy,wehaveexaminedhowvaryingthemicrostructurecanaffectthemixed-modefatiguecrackgrowththresholdsinaTi-6Al-4Valloyasafunctionofloadratioandmode-mixity.Whathasbeenfoundisthatmicrostructure,mode-mixityandloadratioallcanhaveamajorinfluenceonthevalueofthemixed-modethresh-old,butonlyinthepresenceofcrackslargecomparedwith
Threshold strain-energy release rate range, GTH (J/m2 )
Mode I
10
20
30
40
50
60
70
80
90Phase angle, b ( )
Fig.11Mixed-modethresholdsforlarge(>4mm)through-thicknessfatiguecracksinbimodalandlamellarTi-6Al-4VarecomparedwithpuremodeIthresholdsformicrostructurallysmallcracks.Thesuperiorresistanceofthelamellarstructureobservedinthelargecrackregimeiseliminatedforsmallcracks,wheretheroleofmicrostructuralsamplingbecomesimportant.
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
EFFECTSOFMICROSTRUCTUREONTI-6AI-4VALLOY
Surface crack length 2 c (µm)
10 5
601
10 6
Crack-growth rate, da/dN (m/cycle)
10 7
10 8
10 9
10 10
Fig.12Fatiguecrackgrowthratesasafunctionofappliedstress-intensityrangeatR 0.1formicrostructurallysmall
($2±50mm)rge-crackgrowthdataatR 0.1wereobtainedfromconstantload-ratiotests,whereas
correspondingdataatR 0.91±0.95wereobtainedusingconstant-Kmax/increasing-Kmintesting(afterRef.[42]).
10 11
0.612468102040
Stress-intensity range, K (MPaV
m)
4
3
5
Fig.13Variationinmixed-mode
thresholds,DGTH,asafunctionofphaseangle,b,formicrostructurallysmall(<50mm)surfacecracksinthebimodalmicrostructure.Shownforcomparisonareresultsforshort($200mm)through-thicknesscracksandforlarge(>4mm)through-thicknesscracksunderworst-case,highRconditions.
21
1020304050607080Phase angle, b(8)
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
Threshold equivalent strees-intensityrange, Keq,TH (MPaVm )
6
Threshold strain-energy releaserate range, GTH ( J/m 2 )
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
602R.K.NALLAetal.
microstructuralmode-mixitycantthrough-thicknesseffectonanddimensions.Thefactthatmicrostructure,fatigueloadthresholdsratioallhaveinthearelativelypresenceinsignifi-surfacecrack-tipcracksshieldingstronglycracksdictatedimpliesandmicrostructurallyofshortbycrackapath.
dominantrolesmalloflarge-crackThesuperiorcrack-growthresistance,andhencehigherappearstakentoDbeGTHaconsequencethresholds,inofthelamellarstructurehigherbystructures,levelsthepropagatingthepreferentialpathofcrack,whichinturnpromotesbasaltheacrack-tipphaseisorientatedshielding.perpendicularInalignedlamellartotheplaneplane;21crackpropagationparalleltothebasallartoorientationtheorientationisthusofgenerallythealaths.observed22perpendicu-layercantlyofbphasethatsurroundsthealathsBecausecannotthethinoccursalterthecrackpath,crackpropagationinvariablysignifi-entirecrystallographiccolonywithalmostofsimilarlynochangeorientatedindirectionlaths.Thisthroughanevidenttion,inthesignificantinfluenceamountontheoffatigueout-of-planecrackpathstronglyischaracteristicsecondarycomparedofcrackingthecoarserandlamellarcrack-pathtortuositydeflec-thatisbimodalstructurestothealmost(Fig.8).
planarcrackpathsmicrostructures,inthefinerasoneSuchlamellarintrinsicmicrostructuralandonefactorsextrinsic.canInleadthetotwoeffectsÐloading,differentthestructure,crackattemptsatthetoonsetdeviateofthecoarser-grainedalongmixed-modetated(MTS)byfromdrivingcriteria.theGthatofthepreferredpathÐthatadirectionis,dic-maxAlthough,KII 0thisormaximumtensilestressdebatableforce,structuraleffectpath.becauseitseffectontheclearlymeasuredrequiresthresholdahigherisMoretheimportantcrackisfollowingthoughaisweaktheerextrinsicmicro-higherinence,consequencesaslevelswhichshown,ofthecrackclosureroughercrackpathsgiverisetotherespectively,andincrackTables-surface4andinterfer-5.Theactoninthecrackwakofthise,arethethatprimebecausethesemechanismsthetheexpectedprecrack.mixed-modeThus,thresholdariseseffectfromofthemicrostructurepresenceoflessthattheseasmicrostructurehasbeenobserved,effectswillitistobeshortapparentcracks.
iftheDGbefarTHthresholdsaremeasuredformicrostructureAfurtherpointfrontcasesamplesacanofnotelargeonlyisenoughbethatdevelopedsuchbeneficialeffectsofnumberofwheregrains,theasincrackthestudy.ofstructurallyIndeed,thelargethesmallwhereandshortcracksexaminedinthepresentcracksÐthisthisisnotmaythecaseÐe.g.leadtoareversalformicro-theThepresentrelativebasisresultsrankingforthisdoofnotthetwostructures21althoughofreversalshowinvolvesthistooclearlythedensity(Fig.11).of
microstructuralForriersÐrgeandshortbarrierscracks,rlytoorientatedgraincolonies,boundaries,numberofsuchbar-etc.Ðareinterfacesbetweendissimi-tortuosityfrequentture.characteristicHowever,andchangeshigherinpath,andencountered,henceincreasedleadingforsmallthresholdscracks,comparableforthelamellarinsizestruc-tomaytheresultinglamellarencountermicrostructuralstructureasfewasbeonecontainedorsize-scales,twograins,thecrackfrontthewithinorainthecaseofoftheirbarriersinthetocrackfrontsamplingamuchlowersingledensitygrain,canthanshowsuperiorcrackpropagation.poorerlarge-crackproperties,Consequently,despiteresistancetolamellarstructureseffectFinally,bimodaloldsofmode-mixityitisstructuresapparentinthesmall-crackregime.fatiguecrackpropagation21
onthatthethelarge-cracknear-eliminationDGoftheTHmeasurementwhencrack-tipimpliesorbyremovalshieldingisaccountedfor(eitherthresh-byunderthatthethresholdbehaviourofthecrackwakoffatiguee),stronglycracksphenomenon.mixed-modeshearTheloadingprincipalisinfluencepredominantlyoftheamodeIdeflection,loadingtureinconjunctionappearstobewithindictatingthecrack-pathappliedsethencebyinthethecoarsermicrostructures;theoncenear-tipthecrackpathmicrostruc-iseffectivethephasemixed-modeangle,thethresholdinitialcrackextensionaredictatedbyandentmixed-modeofmode-mixity.crack-drivingTheforce,implicationswhichislargelyindepend-theidenticaltionstomodefatiguethresholdbehaviourforthisisareessentiallythattheatothecrack-tipIbehaviourshieldingifthattheareadditionalinducedcontribu-over,deflectedureditfurthercrackpathimpliesarecarefullyaccountedfor.owingMore-toalowerunderbound.
puremodeIthatloading,theDcanGTHbethreshold,consideredmeas-tobeCONCLUSIONS
Basedfatigueonaninvestigationofthemixed-modehigh-cycle(grainturesizebehaviour$20mm)ofandthethefinebimodalmicrostructureengine(colonyalloy,thesizefollowing$500mm)coarserconclusionsinalamellarTi-6Al-4Vmicrostruc-canbemade:
turbine-1Bothmicrostructuresdisplayedamarkedeffectofmode-mixityandloadratioonthemeasuredmixed-modefa-tiguethresholdsforthrough-thicknesslarge(>4mm)cracks.Bycharacterizingthecrack-drivingforceintermsofthestrain-energyreleaserate,DG,themodeIthresholdwasfoundtorepresenttheworst-casecondition.
2Thecoarse-grainedlamellarmicrostructurewasgener-allyobservedtohavehigherthresholds,andhencesuper-iormixed-mode,near-thresholdfatiguecrack-growth
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
resistance,comparedtothebimodalstructure,inthepresenceoflargethrough-thicknessfatiguecracks.How-ever,thisdifferencewassignificantlyreducedathighphaseangles.
3
Themarkedeffectofloadratioandmode-mixitywassubstantiallyreducedwhenthelarge-crackDGTHthresh-oldswere`corrected'forcrack-tipshieldingowingtomodeIcrackclosureandmodeIIcrack-surfaceinterfer-ence.Assuchshieldingwaspromotedinthecoarserlamellarmicrostructurebyahigherdegreeofcrack-pathtortuosityandfracture-surfaceroughness,thesuperiorlarge-crackpropertiesofthisstructureweresignificantlyreducedbysuchcorrections.
4
Mixed-modeDGTHthresholdsforthrough-thicknessshortcracks($200mm)weresubstantiallylowerthancorrespondinglarge-crackthresholdsinbothmicrostruc-tures;moreover,short-crackthresholdvalueswereessen-tiallyinsensitivetoloadratioandmode-mixity.
5
Comparedtolarge-crackthresholdbehaviour,theinflu-enceofmicrostructureonsuchshort-crackmixed-modeDGTHthresholdswassubstantiallyreduced.Thiswasattributedtotheabsenceofcrack-tipshieldingeffectswithcracksoflimitedwake.
6
Resultsfornaturallyinitiatedmicrostructurallysmall(<50mm)semiellipticalsurfacecracksinthebimodalmicrostructureindicatethatmixed-modeDGTHthresholdsforsuchcracksaresubstantiallylowerthanthoseforlargecracks;indeed,large-crackthresholdsathighmode-mixities(DKII/DKI$7.1)canbesome50±90timeslargerthansuchmeasuredsmall-crackthresholds.Thesubstantiallylowersmall-crackthresholdswereassociatedwithalimitedroleofcrack-tipshieldingandadditionallywithbiasedmicrostruc-turalsamplingbycracksofadimensioncomparablewiththecharacteristicmicrostructuralsize-scales.
7
Theprimesourceoftheinfluenceofmixed-modeloadingindictatingthevalueofthemixed-modeDGTHthresholdisconsideredtoariseprimarilyfromthetrajectoryoftheprecrack.Becausemicrostructurecaninfluencethistra-jectory,ingeneralmicrostructuraleffectsonmixed-modethresholdsresultmainlyfromtheroleofcrack-tipshieldingthatarisesfromsuchcrackpaths.Wherecracksizesaresmallenoughsothatsuchshieldingcannotfullydevelop,theinfluenceofmicrostructureonmixed-modethresholdsbecomesminimal.
Acknowledgements
ThisScientificworkwassupportedbytheUSAirForceOfficeunderResearchtheResearchauspicesunderoftheGrantNo.F49620-96-1-0478ofsityDrsofInitiativeonHigh-CycleMultidisciplinaryFatiguetotheUniversityUniver-ThompsonB.CaliforniaL.Boyce,atBerkeley.SpecialthanksareduetoforhelpfulI.Altenberger,discussions.
J.O.PetersandA.W.ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
EFFECTSOFMICROSTRUCTUREONTI-6AI-4VALLOY603
REFERENCES
1ReportoftheAdHocCommitteeonAirForceAircraftJetEngineManufacturingandProductionProcesses(1992)UnitedStatesAirForceScientificAdvisoryBoard,SAF/AQQS:thePentagon,Washington,D.C.,USA.
2Cowles,B.A.(1996)High-cyclefatigueinaircraftgasturbines±anindustryperspective.Int.J.Fract.80,147±163.
3Chang,J.C.I.(1996)AnintegratedresearchapproachtoattackengineHCFProblems.AirForceOfficeofScientificResearch,BollingAFB,Washington,D.C.,USA.
4MultidisciplinaryUniversityResearchInitiativeonHigh-CycleFatigue.Grantno.F49620±96±1À0478,U.S.AirForceOfficeofScientificResearch.
5Waterhouse,R.B.andLindley,T.C.(1994)FrettingFatigue(EditedbyEuropeanStructuralIntegritySocietyPublicationno.18).MechanicalEngineeringPublicationsLtd,London,UK.6Iida,S.andKobayashi,A.S.(1969)Crack-propagationratein7075-T6platesundercyclictensileandtransverseshearloadings.J.Bas.Eng.Trans.ASME91,764±769.
7Gao,H.,Alagok,N.,Brown,M.W.andMillerK.J.(1985)GrowthoffatiguecracksundercombinedmodeIandmodeIIloads.In:MultiaxialFatigue,ASTMSTP853(EditedbyK.J.MillerandM.W.Brown).ASTM,Philadelphia,PA,USA,pp.184±202.
8Pustejovsky,M.A.(1979)Fatiguecrackpropagationintitaniumundergeneralin-planeloading.I.Experiments.Eng.Fract.Mech.11,9±15.
9Pustejovsky,M.A.(1979)Fatiguecrackpropagationintitaniumundergeneralin-planeloading.II.Analysis.Eng.Fract.Mech.11,17±31.
10Campbell,J.P.andRitchie,R.O.(2000)Mixed-mode,high-cyclefatigue-crackgrowththresholdsinTi-6Al-4V.I.a
comparisonoflarge-andshort-crackbehavior.Eng.Fract.Mech.67,209±227.
11Campbell,J.P.andRitchie,R.O.(2000)Mixed-mode,high-cyclefatigue-crackgrowththresholdsinTi-6Al-4V.II.quanti-ficationofcrack-tipshielding.Eng.Fract.Mech.67,229±249.12Campbell,J.P.andRitchie,R.O.(2001)Mixed-mode,high-cyclefatigue-crackgrowththresholdsinTi-6Al-4V:roleofbimodalandlamellarmicrostructures.Metall.Mater.Trans.A32A,497±503.
13Kruzic,J.J.,Campbell,J.P.andRitchie,R.O.(1999)Onthe
fatiguebehaviorofg-basedtitaniumaluminides:roleofsmallcracks.Acta.Mater.47,801±816.
14ThompsonA.W.(1999)Relationsbetweenmicrostructureand
fatiguepropertiesofalpha±betatitaniumalloys.In:FatigueBehaviorofTitaniumAlloys(EditedbyR.R.Boyer,D.EylonandG.LuÈtjering).TMS,Warrendale,PA,USA,pp.23±30.15LuÈtjering,G.(1998)InfluenceofProcessingonMicrostructure
andMechanicalPropertiesof(a b)TitaniumAlloys.Mater.Sci.Eng.A243,32±45.
16Irving,P.E.andBeevers,C.J.(1974)Microstructuralinfluences
onfatiguecrackgrowthinTi-6Al-4V.Mater.Sci.Eng.14,229±238.
17Bache,M.R.,Evans,W.J.andMcElhone,M.(1997)The
effectsofenvironmentandinternaloxygenonfatiguecrackpropagationinTi-6Al-4V.Mater.Sci.Eng.A234±236,918±922.18Thomas,J.P.(1998)SubcriticalcrackgrowthofTi-6Al-4Vat
roomtemperatureunderhighstress-ratioloading.ScriptaMater.39,1647±1652.
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
604R.K.NALLAetal.
19Ravichandran,K.S.(1991)Nearthresholdfatiguecrackgrowth
behaviorofatitaniumalloy:Ti-6Al-4V.ActaMetall.Mater.39,401±410.
20Boyce,B.L.andRitchie,R.O.(2001)Effectofloadratioand
maximumstressintensityonthefatiguethresholdinTi-6Al-4V.Eng.Fract.Mech.68,129±147.
21Gregory,J.K.(1994)Fatiguecrackpropagationintitanium
alloys.In:HandbookofFatigueCrackPropagationinMetallicStructures(EditedbyA.Carpinteri).ElsevierScienceB,V.,Amsterdam,TheNetherlands,pp.281±321.
22Nalla,R.K.,Boyce,B.L.,Campbell,J.P.,Peters,J.O.and
Ritchie,R.O.(2002)Influenceofmicrostructureonhigh-cyclefatigueofTi-6Al-4V:mellarstructures.Metall.Mater.Trans.A33A,899±918.
23Eylon,D.(1998)Summaryofavailableinformationonthe
processingoftheTi-6Al-4VHCF/LCFprogramplates.UniversityofDaytonReport,Dayton,OH,USA.
24Boyce,B.L.(1998)HighCycleFatigueThresholdsinaTurbine
EngineTitaniumAlloy.MScThesis,UniversityofCaliforniaatBerkeley,Berkeley,CA,USA.
25He,M.Y.,Cao,H.C.andEvans,A.G.(1990)Mixed-mode
fracture:thefour-pointshearspecimen.ActaMetall.Mater.38,839±846.
26Suresh,S.,Shih,C.F.,Morrone,A.,O'Dowd,N.P.(1990)
Mixed-modefracturetoughnessofceramicmaterials.J.Am.Ceram.Soc.73,1257±1267.
27Slepetz,M.,Zagaeski,T.F.andNovello,R.F.(1978)AMMRC-TR-78-30,ArmyMaterialsandMechanicsResearchCenter,Watertown,MA,USA.
28He,M.Y.andHutchinson,J.W.(2000)Asymmetricfour-point
crackspecimen.J.Appl.Mech.Trans.ASME67,207±209.29Newman,J.C.andRaju,I.S.(1981)Anempiricalstress-intensityfactorequationforthesurfacecrack.Eng.Fract.Mech.15,185±192.
30He,M.Y.andHutchinson,J.W.(2000)Surfacecracksubjectto
mixedmodeloading.Eng.Fract.Mech.65,1±14.
31Ravichandran,K.S.(1997)Effectsofcrackaspectratioonthe
behaviorofsmallsurfacecracksinfatigue:PartI.simulation.Metall.Mater.Trans.A28A,149±156.
32Ravichandran,K.S.andLarsen,J.M.(1997)Effectsofcrack
aspectratioonthebehaviorofsmallsurfacecracksinfatigue:PartII.experimentsonatitanium(Ti-8Al)alloy.Metall.Mater.Trans.A28A,157±169.
33Hua,G.,Brown,M.W.andMiller,K.J.(1982)Mixed-mode
fatiguethresholds.Fat.Eng.Mater.Struct.5,1±17.
34Tong,J.,Yates,J.R.andBrown,M.W.(1994)Thesignificance
ofmeanstressonthefatiguecrackgrowththresholdformixedmodeI IIloading.Fat.Eng.Mat.Struct.17,829±838.35Qian,J.andFatemi,A.(1996)Mixedmodefatiguecrack
growth:aliteraturesurvey.Eng.Fract.Mech.55,969±990.36Erdogan,F.andSih,G.C.(1963)Onthecrackextensionin
platesunderplaneloadingandtransverseshear.J.Bas.Eng.Trans.ASME85,519±525.
37Cotterell,B.(1965)Onbrittlefracturepaths.Int.J.Fract.
Mech.1,96±103.
38John,R.,Rosenberger,A.H.,DeLuca,D.,PorterJ.W.andLi,
K.(1999)Mixedmodecrackgrowthinagammatitaniumaluminidealloy.In:GammaTitaniumAluminides1999(EditedbyY.W.Kim,D.M.DimidukandM.H.Loretto).TMS,Warrendale,PA,USA,pp.535±540.
39Nayeb-Hashemi,H.,McClintock,F.A.andRitchie,R.O.
(1982)EffectsoffrictionandhightorqueonfatiguecrackpropagationinmodeIII.Metall.Trans.A13A,2197±2204.40Tschegg,E.K.(1983)SlidingmodecrackclosureandmodeIII
fatiguecrackgrowthinmildsteel.ActaMetall.31,1323±1330.41Zheng,Y.S.,Wang,Z.G.andAi,S.H.(1994)Mixed-modeI
andIIfatiguethresholdandcrackclosureindual-phasesteels.Metall.Mater.Trans.A25A,1713±1723.
42Peters,J.O.andRitchie,R.O.(2001)Foreignobjectdamage
andhighcyclefatigue:RoleofmicrostructureinTi-6Al-4V.Int.J.Fatigue23,1413±1421.
43Suresh,S.andRitchie,R.O.(1984)Propagationofshortcracks.
Int.Metals.Rev.29,445±476.
44Ritchie,R.O.andLankford,J.(1986)Smallfatiguecracks:a
statementoftheproblemandpotentialsolutions.Mater.Sci.Eng.A84,11±16.
45RitchieR.O.andWuY.(1986)Shortcrackeffectsinfatigue:a
consequenceofcracktipshielding.In:SmallFatigueCracks(nkford.).TMS-AIME,War-rendale,PA,USA,pp.167±189.
46VenkateswaraRao,K.T.,Yu,W.andRitchie,R.O.(1988)On
thebehaviorofsmallfatiguecracksincommercialaluminum±-lithiumalloys.Eng.Fract.Mech.31,623±635.
47Bilby,B.A.,Cardew,G.E.andHoward,I.C.(1978)Stress
intensityfactorsatthetipsofkinkedandforkedcracks.In:Fracture1977(EditedbyD.M.R.Taplin),PergamonPress,Oxford.U.K.,Vol.3,pp.197±200.
48Cotterell,B.andRice,J.R.(1980)Slightlycurvedorkinked
cracks.Int.J.Fract.16,155±169.
49Nalla,R.K.,Campbell,J.P.andRitchie,R.O.(2002)Mixed-mode,high-cyclefatigue-crackgrowththresholdsinTi-6Al-4V:roleofsmallcracks.Int.J.Fatigue,inpress.
APPENDIXA
Distinctionbetweenlarge,shortandsmallcracksAlargepointA1a),shortofnoteandsmallinthiscracks.workisLargethedistinctionfatiguecracksbetween(paredaredefineddirections.totheasscalehavingofthedimensionsmicrostructurethatarelargevelopedmicrostructurecrack-tipTherefore,shieldingtheyzonegenerallyandhavecanafullyinbothde-Withdescribedrespectasbeingtoinlargeastatisticalcomparablecracks,small(continuum)`sample'manner.the43insizecracksto:44
aregenerally.microstructuraldimensions,wherebiasedstatisticalsam-plingofthemicrostructurecanleadtoacceleratedcrackadvancealong`weak'paths;thatis,microstructuralfeaturesorientatedforeasycrackgrowth(acontinuumlimitation),.theextentoflocalinelasticityaheadofthecracktip,wheretheassumptionofsmall-scaleyieldingimplicitintheuseofthestressintensity,K,isnotstrictlyvalid(alinear-elasticfracturemechanicslimitation),
.theextentofcrack-tipshielding(e.g.crackclosure)behindthecracktip,wherethereducedroleofshieldingleadsto
ß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
Large Crack
a >> IsW >> r
ahigherlocaldrivingforcethanthecorrespondinglargecrackatthesameappliedKlevel(asimilitudelimitation).
(a)
sShort crack
a < IsW >> r
(b)
Small cracka < Isa ~ r
(c)
Fig.A1Schematicillustrationshighlightingthekeydistinctionsbetweenlarge,rgecracks(a)havelength,a,andwidth,W,whicharelargebothwithrespecttotheequilibriumshielding-zonelength,ls(indicatedhereasaregionofdebrisinthecrackwakewhichproducescrackclosure),andthecharacteristicmicrostructuralsizescale,r,e.g.thegrainsize.Incontrasttothis,shortfatiguecracks(b)arecharacterizedbya<ls,butW)r.Thereducedcrack-wakelengthresultsinalowerlevelofcrack-tipshielding.Forsmallcracks(c),thefracturesurfaceisreducedinbothdimensions,witha(andW)beingsmallwithrespecttobothlsandr.Thefactthata$rimpliesthatthecrackfrontsamplesonlyafewmicrostructuralentities,leadingtoabiasedsamplingofthemicrostructure.
However,afurtherimportantdistinctioncanbemade,namelythatofashortvs.smallcrack.Thisdistinctionalludesnotsimplytophysicalsizebuttheextenttowhichafatiguecrackissubjectedtothefirstandthirdfactorslistedabove.Shortfatiguecracks(Fig.A1b)arephysic-allyshortinonlyonedimension,aconditionthatisoftenrealizedexperimentallybymachiningawaythewakeofalargecrack.Thistypeoffatigueflawexperienceslimitedcrack-tipshieldingowingtoitsreducedlength,45yetsamplesthemicrostructureasacontinuumbecauseofitsextensivecrackfront.Bycontrast,smallfatiguecracks(Fig.A1c)aresmallandcomparabletothemicrostruc-turalsize-scaleinalldimensions,astypifiedbythesmall,semiellipticalsurfaceflaw(e.g.Refs[44,46]).Withsuchcracks,crack-tipshieldingissignificantlyreduced(e.g.Ref.[43]),andsincethecrackfrontsamplesonlyafewmicrostructuralentities,thisallowsforabiasedsamplingofmicrostructurallyweakpaths.Becauseofthisrestric-tioninshieldingandthebiasedmicrostructuralsam-pling,fatiguecrackgrowthresistanceinthepresenceofsmallcracksoftentendstobelowest.AppendixB
Calculationofthemixed-modethreshold
Inthiswork,asinpriorstudies(e.g.Refs[7±12,33,34])onmixed-modefatiguethresholds,thethresholdvaluesofthemodeIandmodeIIstressintensitiesrequiredtoinitiatecracking,DKI,THandDKII,TH,arecalculatedbasedonthemodeIprecrack(whichisgeneratedinnear-identicalfashionforeachtest);thecorrespondingmixed-modethreshold,DGTH,orequivalentstressinten-sity,DKeq,TH,arethencomputed
from:
b << a
a
ABSTRACT Effect of microstructure on mixed-mode (mode I ? II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of cracksizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditi
606R.K.NALLAetal.
ÁGTH À
ÁKI;TH2 ÁKII;TH
2
Á=EH1 ÀÁKeq;TH2Á
=EH A1
whereE'isalongHowever,criterionadifferentsincetheappropriateoncepaththe(correspondingcrackstartselasticmodulus.
totogrow,alocalitdeflectsKII alternativemodifiedtheAssumingpresencecalculationbytheeffectofthemicrostructure),an0ofaninfinitesimalofthethresholdcanbebasedontheanglecracklength)forsimplicityrepresentsthatthekinkankinkalongin-plane(oflengththisdirection.tiltthroughb<<a,modeadeflectedIandtothecracktipmodeprecrackplaneIIwillstressbeintensities,(Fig.A2),givenby:47,48Dkthenthe,atlocal1andDk2theÁk1 a c11ÁKI c12ÁKIIÁk2 a c21ÁKI c22ÁKII
A2
where(pre)crack,DKIandtionandtheDKIIcoefficientsarethestresscintensitiesforamainthresholds,ofa,areij,whichareasolefunc-from:
DGgiven'inRefs[47,48].Themixed-modeTHandDK'TH,canthenbecomputedÁGHÀÁEH TH Ák1;TH2 Ák2;TH2=ÁKTH
H2
=EH A3
theAsdiscussedelsewhere,49theuseofEqn.A3tocalculate
putedmixed-modemuchvaluesofDthresholdKcaninfactreducethecom-eq,TH,atspecificphaseanglesbythisvaluestranslatesas40%.Forbytypicallyintothe1±2abimodalMPareductionandHm.
inlamellarthresholdTi-6Al-4VasDK,eq,THß2002BlackwellScienceLtd.FatigueFractEngngMaterStruct25,587±606
- 1Effects of Pointers on Data Dependences
- 2Effects of Biodiversity on ecosystem function
- 3Effects of Pointers on Data Dependences
- 4After_Effects_CS6_Scripting_Guide(AE脚本参考书)
- 5High-Productivity Stream Programming For High-Performance Systems
- 6cell cycle control -wdd1
- 7The penultimate rate of growth for graph properties
- 8After Effects试题
- 9After_Effects_CS6_Scripting_Guide(AE脚本参考书)
- 10After_Effects_CS6_Scripting_Guide(AE脚本参考书)
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- microstructure
- thresholds
- Effects
- fatigue
- growth
- mixed
- cycle
- crack
- mode
- high
- Ti