2015年中考数学复习专题讲座-方法论与解题技巧

更新时间:2023-04-07 17:17:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2013年中考数学专题讲座一:选择题解题方法

一、中考专题诠释

选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.

选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.

二、解题策略与解法精讲

选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.

解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.

三、中考典例剖析

考点一:直接法

从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础.

例1 (2012?白银)方程的解是()

A.x=±1 B.x=1 C.x=﹣1 D.x=0

思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

解:方程的两边同乘(x+1),得

x2﹣1=0,

即(x+1)(x﹣1)=0,

解得:x1=﹣1,x2=1.

检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解;

把x=1代入(x+1)=2≠0,即x=1是原分式方程的解.则原方程的解为:x=1.

故选B.

点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.

对应训练

1.(2012?南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()

A.7队B.6队C.5队D.4队

考点二:特例法

运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好.

例2 (2012?常州)已知a、b、c、d都是正实数,且

a c

b d

<,给出下列四

个不等式:

a c

a b c d

<

++

;②

c a

c d a b

<

++

;③

d b

c d a b

<

++

;④

b d

a b c d

<

++

其中不等式正确的是()

A.①③B.①④C.②④

D.②③

思路分析:由已知a、b、c、d都是正实数,且

a c

b d

<,取a=1,b=3,c=1,

d=2,代入所求四个式子即可求解。

解:由已知a、b、c、d都是正实数,且

a c

b d

<,取a=1,b=3,c=1,d=2,

1111

,

134123

a c

a b c d

====

++++

,所以

a c

a b c d

<

++

,故①正确;

2233

,

123134

d b

c d a b

====

++++

,所以

d b

c d a b

<

++

,故③正确。

故选A。

点评:本题考查了不等式的性质,用特殊值法来解,更为简单.

对应训练 2.(2012?南充)如图,平面直角坐标系中,⊙O 的半径长为1,点P (a ,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为(

) A .3 B .1 C .1,3 D .±1,±3

考点三:筛选法(也叫排除法、淘汰法)

分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.

例3 (2012?东营)方程(k-1)x 2

-1k -x+

1

4

=0有两个实数根,则k 的取值范围是( )

A .k≥1

B .k≤1

C .k >1

D .k <1 思路分析:原方程有两个实数根,故为二次方程,二次项系数不能为0,可排除A

、B ;又因为被开方数非负,可排除C 。故选D .

解:方程(k-1)x 2

-1k -x+

1

4

=0有两个实数根,故为二次方程,二次项系数10k -≠,1k ≠,可排除A 、B ;又因为10,1k k -厔,可排除C 。

故选D .

点评:此题考查了一元二次方程根的判别式与解的情况,用排除法较为简单. 对应训练

3. (2012?临沂)如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数 y=

1k x (x >0)和y=2k

x

(x >0)的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )

A .∠POQ 不可能等于90°

B .

1

2

k PM QM k =

C .这两个函数的图象一定关于x 轴对称

D .△POQ 的面积是

1

2

(|k 1|+|k 2|)

考点四:逆推代入法

将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度. 例4 (2012?

贵港)下列各点中在反比例函数y=6

x

的图象上的是( ) A .(-2,-3) B .(-3,2) C .(3,-2)

D .(6,-1)

思路分析:根据反比例函数y=

6

x

中xy=6对各选项进行逐一判断即可. 解:A 、∵(-2)×(-3)=6,∴此点在反比例函数的图象上,故本选项正确;

B 、∵(-3)×2=-6≠6,∴此点不在反比例函数的图象上,故本选项错误;

C 、∵3×(-2)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误;

D 、∵6×(-1)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误. 故选A .

点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy 的特点是解答此题的关键. 对应训练 4.(2012?贵港)从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k 值,则所得的直线不经过第三象限的概率是( ) A .

B .

C .

D . 1

考点五:直观选择法

利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最

值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正

确答案的方法。这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、

解答题)都可以用数形结合思想解决,既简捷又迅速.

例5(2012?贵阳)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x

≤0时,下列说法正确的是()

A.有最小值-5、最大值0 B.有最小值-3、最大值6

C.有最小值0、最大值6 D.有最小值2、最大值6

解:由二次函数的图象可知,

∵-5≤x≤0,

∴当x=-2时函数有最大值,y最大=6;

当x=-5时函数值最小,y最小=-3.

故选B.

点评:本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答

此题的关键.

对应训练

5.(2012?南宁)如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的

对称轴相同,则下列关系不正确的是()

A.k=n B.h=m C.k<n D.h<0,k

<0

考点六:特征分析法

对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如

数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作

出判断和选择的方法

例6 (2012?威海)下列选项中,阴影部分面积最小的是()

A.B.

C.D.

分析:根据反比例函数系数k的几何意义对各选项进行逐一分析即可.

解:A、∵M、N两点均在反比例函数y=

2

x

的图象上,∴S阴影=2;

B、∵M、N两点均在反比例函数y=

2

x

的图象上,∴S阴影=2;

C、如图所示,分别过点MN作MA⊥x轴,NB⊥x轴,则

S阴影=S△OAM+S阴影梯形

ABNM -S△OBN=

1

2

×2+

1

2

(2+1)×1-

1

2

×2=

3

2

D、∵M、N两点均在反比例函数y=

2

x

的图象上,∴

1

2

×1×4=2.

3

2

<2,

∴C中阴影部分的面积最小.

故选C

点评:本题考查的是反比例函数系数k的几何意义,即在反比例函数的图象上任意

一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是

||

2

k

且保持不变.

对应训练

6.(2012?丹东)如图,点A是双曲线y=在第二象限分支上的任意一点,点B、

点C、点D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面

积是8,则k的值为()

A.﹣1 B.1C.2D.﹣2

考点七:动手操作法

与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,

只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以

直观得到答案,往往能达到快速求解的目的.

例7 (2012?西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历

的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手

段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把

一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学

结论()

A.角的平分线上的点到角的两边的距离相等

B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边

的一半

C.直角三角形斜边上的中线等于斜边的一半

D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角

三角形

思路分析:严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,

也可仔细观察图形特点,利用对称性与排除法求解.

解:如图②,∵△CDE由△ADE翻折而成,

∴AD=CD,

如图③,∵△DCF由△DBF翻折而成,

∴BD=CD,

∴AD=BD=CD,点D是AB的中点,

∴CD=

1

2

AB,即直角三角形斜边上的中线等于斜边的一半.

故选C .

点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键. 对应训练 7.(2012?宁德)将一张正方形纸片按图①、图

②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是(

A .

B .

C .

D .

四、中考真题演练

1.(2012?衡阳)一个圆锥的三视图如图所示,则此圆锥的底面积为( )

A .30πcm 2

B . 25πcm 2

C . 50πcm 2

D . 100πcm 2 2.(2012?福州)⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是( )

A .内含

B . 相交

C . 外切

D . 外离 3.(2012?安徽)

为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a ,则阴影部分的面积为( )

A .2a 2

B . 3a 2

C . 4a 2

D . 5a 2 4.(2012?安徽)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线?,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△

PAB 的面积y 关于x 的函数图象大致是(

A .

B .

C.

D .

5.(2012?黄石)有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=3,y=2 C.x=4,y=1 D.x=2,y=3 6.(2012?长春)有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图象可能是()

A.

B.

C.

D.

7.(2012?荆门)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作?ABCD,其中C、D在x轴上,则S□ABCD为()

A.2 B.3C.4D.5 8.(2012?河池)若a>b>0,则下列不等式不一定成立的是()

A.ac>bc B.a+c>b+c C.D.a b

>b2

9.(2012?南通)已知x2+16x+k是完全平方式,则常数k等于()A.64 B.48 C.32 D.16

10.(2012?六盘水)下列计算正确的是()

A .B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x

11.(2012?郴州)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)

12.(2012?莆田)在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数

相同,身高的平均数均为166cm ,且方差分别为=1.5,=2.5

,=2.9,=3.3,则这四队女演员的身高最整齐的是()

A.甲队B.乙队C.丙队D.丁队

13.(2012?怀化)为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()

A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐

C.甲、乙出苗一样整齐D.无法确定14.(2012?长春)如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()

A.27 B.29 C.30 D.31 15.(2012?钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()

A.正三角形B.正方形C.正五边形D.正六边形

16.(2012?江西)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()

A.a户最长B.b户最长C.c户最长D.三户一样长

17.(2012?大庆)平面直角坐标系中,O为坐标原点,点A 的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为()A.(1,)B.(﹣1,)C.(O,2)D.(2,0)18.(2012?长春)在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()

A.

B.

C.

D.

19.(2012?凉山州)已知,则的值是()

A .B.

C.D.20.(2012?南充)下列几何体中,俯视图相同的是()

A.①②B.①③C.②③D.②④

21.(2012?朝阳)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是()

A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆

22.(2012?河池)如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=25°,那么∠2的度数是()

A.30°B.25°C.20°D.15°23.(2012?长春)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取

OA、OB,使OA=OB;再分别以点A、B 为圆心,以大于AB长为半径作弧,两

弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()

A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣

2m=1

24.(2012?巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD 的条件是()

A.AB=AC B.∠BAC=90°C.B D=AC D.∠B=45°25.(2012?河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()

A.一组邻边相等的四边形是菱形

B.四边相等的四边形是菱形

C.对角线互相垂直的平行四边形是菱形

D.每条对角线平分一组对角的平行四边形是菱形

26.(2012?随州)如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()

A.35°B.55°C.70°D.110°

27.(2012?攀枝花)下列四个命题:

①等边三角形是中心对称图形;

②在同圆或等圆中,相等的弦所对的圆周角相等;

③三角形有且只有一个外接圆;

④垂直于弦的直径平分弦所对的两条弧.

其中真命题的个数有()

A.1个B.2个C.3个D.4个

28.(2012?莱芜)以下说法正确的有()

①正八边形的每个内角都是135°

②与是同类二次根式

③长度等于半径的弦所对的圆周角为30°

④反比例函数y=﹣,当x <0时,y 随x 的增大而增大.

A .1个

B . 2个

C . 3个

D . 4个 29.(2012?东营)如图,一次函数y=x+3的图象与x 轴,y 轴交于A ,B 两点,与反比例函数

的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,

垂足为E ,F ,连接CF ,DE .有下列四个结论:

①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;④

AC=BD .

其中正确的结论是( )

A .①②

B . ①②③

C . ①②③④

D . ②③④

专题一 选择题解题方法参考答案

三、中考典例剖析

对应训练 1.C

解:设邀请x 个球队参加比赛, 依题意得1+2+3+…+x -1=10, 即

(1)

2

x x -=10, ∴x 2

-x-20=0,

∴x=5或x=-4(不合题意,舍去). 故选C .

2.D

解:当两个圆外切时,圆心距d=1+2=3,即P 到O 的距离是3,则a=±3. 当两圆相内切时,圆心距d=2-1=1,即P 到O 的距离是1,则a=±

1. 故a=±1或±3. 故选D . 3.D

解:A .∵P 点坐标不知道,当PM=MO=MQ 时,∠POQ=90°,故此选项错误;

B .根据图形可得:k 1>0,k 2<0,而PM ,QM 为线段一定为正值,故

1

2

k PM QM k =,故此选项错误;

C .根据k 1,k 2的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误; 故选:

D . 4.C 5.A 6.D

解:∵点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点, ∴四边形ABCD 是矩形, ∵四边形ABCD 的面积是8, ∴4×|﹣k|=8, 解得|k|=2,

又∵双曲线位于第二、四象限, ∴k <0, ∴k=﹣2. 故选D . 7. B .

四、中考真题演练 1.B 2.C 3.A

解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a ,

∴AB=a,且∠CAB=∠CBA=45°,

∴sin45°==

=,

∴AC=BC=a,

∴S

△ABC

=×a ×a=,

∴正八边形周围是四个全等三角形,面积和为:×4=a2.

正八边形中间是边长为a的正方形,

∴阴影部分的面积为:a2+a2=2a2,

故选:A.

4.D

解:当P与O重合,

∵A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,

∴AO=2,OP=x,则AP=2﹣x,

∴tan60°==,

解得:AB=(2﹣x)=﹣x+2,

∴S

△ABP

=×PA×AB=(2﹣x)??(﹣x+2)=x2﹣6x+6,

故此函数为二次函数,

∵a=>0,∴当x=﹣=﹣=2时,S 取到最小值为:=0,

根据图象得出只有D符合要求.

故选:D.

5.B

解:根据题意得:7x+9y≤40,

则x ≤,

∵40﹣9y≥0且y是非负整数,

∴y的值可以是:1或2或3或4.

当x的值最大时,废料最少,

当y=1时,x ≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3mm;当y=2时,x ≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1mm;当y=3时,x ≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6mm;当y=4时,x ≤,则x=0(舍去).

则最小的是:x=3,y=2.

故选B.

6.A

7.D

解:设A的纵坐标是b,则B的纵坐标也是b.

把y=b代入y=得,b=,则x=,,即A 的横坐标是,;

同理可得:B 的横坐标是:﹣.

则AB=﹣(﹣)=.

则S□ABCD =×b=5.

故选D.

8.A

9.A

10.D

11.D

12.A

13.A

14.C

15.D

16.D

17.A

解:如图,作AC⊥x轴于C点,BD⊥y轴于D点,∵点A 的坐标为(,1),

∴AC=1,OC=,

∴OA==2,

∴∠AOC=30°,

∵OA绕原点按逆时针方向旋转30°得OB,

∴∠AOB=30°,OA=OB,

∴∠BOD=30°,

∴Rt△OAC≌Rt△OBD,

∴DB=AC=1,OD=OC=,

∴B点坐标为(1,).

故选A.

18.D

19.D

20.C

21.B

22.C

解:∵△GEF是含45°角的直角三角板,

∴∠GFE=45°,

∵∠1=25°,

∴∠AFE=∠GEF﹣∠1=45°﹣25°=20°,

∵AB∥CD,

∴∠2=∠AFE=20°.

故选C.

23.B

解:∵OA=OB;分别以点A、B 为圆心,以大于AB长为半径作弧,两弧

交于点C,

∴C点在∠BOA的角平分线上,

∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,

即m﹣2n=1.

故选:B.

24.A

25.B

26.B

27.B

解:∵等边三角形是轴对称图形,但不是中心对称图形,∴①是假命题;

如图,∠C和∠D都对弦AB,但∠C和∠D不相等,即②是假命题;

三角形有且只有一个外接圆,外接圆的圆心是三角形三边垂直平分线的交点,即③是真命题;

垂直于弦的直径平分弦,且平分弦所对的两条弧,即④是真命题.

故选B.

28.C

解:①正八边形的每个内角都是:=135°,故①正确;

②∵=3,

=,

∴与是同类二次根式;故②正确;

③如图:∵OA=OB=AB,

∴∠AOB=60°,

∴∠C=∠AOB=30°,

∴∠D=180°﹣∠C=150°,

∴长度等于半径的弦所对的圆周角为:30°或150°;故③错误;

④反比例函数y=﹣,当x<0时,y随x的增大而增大.故④正确.

故正确的有①②④,共3个.

故选C.

29.C

解:①设D(x ,),则F(x,0),

由图象可知x>0,

∴△DEF 的面积是:×||×|x|=2,

设C(a ,),则E(0,),

由图象可知:<0,a>0,

△CEF 的面积是:×|a|×||=2,

∴△CEF的面积=△DEF的面积,

故①正确;

②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,

故EF∥CD,

∴FE∥AB,

∴△AOB∽△FOE,

故②正确;

③∵C、D是一次函数y=x+3的图象与反比例函数的图象的交点,∴x+3=,

解得:x=﹣4或1,

经检验:x=﹣4或1都是原分式方程的解,

∴D(1,4),C(﹣4,﹣1),

∴DF=4,CE=4,

∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,

∴A(﹣3,0),B(0,3),

∴∠ABO=∠BAO=45°,

∵DF∥BO,AO∥CE,

∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,

∴∠DCE=∠FDA=45°, 在△DCE 和△CDF 中

∴△DCE ≌△CDF (SAS ), 故③正确;

④∵BD ∥EF ,DF ∥BE ,

∴四边形BDFE 是平行四边形, ∴BD=EF , 同理EF=AC , ∴AC=BD , 故④正确; 正确的有4个. 故选C .

2013年中考数学专题讲座二:新概念型问题

一、中考专题诠释

所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新

概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力 二、解题策略和解法精讲

“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.

三、中考典例剖析

考点一:规律题型中的新概念

例1 (2012?永州)我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 .

思路分析:由于3-1=2,7-3=4,13-7=6,…,由此得出相邻两数之差依次大2,故13的后一个数比13大8.

解答:解:由数字规律可知,第四个数13,设第五个数为x , 则x-13=8,解得x=21,即第五个数为21, 故答案为:21.

点评:本题考查了数字变化规律类问题.关键是确定二阶等差数列的公差为2.

对应训练

1.(2012?自贡)若x 是不等于1的实数,我们把

1

1x

-称为x 的差倒数,如2的差倒数是

112-=-1,-1的差倒数为 11(1)--= 12

,现已知x 1=- 13,x 2

是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2012= .

考点二:运算题型中的新概念

例2 (2012?菏泽)将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖

直线记成

a b c d ,概念a b

c d

=ad-bc ,上述记号就叫做2阶行列式.若1111

x x

x x +--+=8,则x= .

思路分析:根据题中的新概念将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.

解:根据题意化简1111

x x

x x +--+=8,得:(x+1)2-(1-x )2=8,

整理得:x 2+2x+1-(1-2x+x 2)-8=0,即4x=8, 解得:x=2. 故答案为:2

点评:此题考查了整式的混合运算,属于新概念的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 对应训练

2.(2012?株洲)若(x 1,y 1)?(x 2,y 2)=x 1x 2+y 1y 2,则(4,5)?(6,8)= . 考点三:探索题型中的新概念

例3

(2012?南京)如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A 、B 重合)、我们称∠APB 是⊙O 上关于点A 、B 的滑动角. (1)已知∠APB 是⊙O 上关于点A 、B 的滑动角, ①若AB 是⊙O 的直径,则∠APB= °; ②若⊙O 的半径是1,AB=,求∠APB 的度数;

(2)已知O 2是⊙O 1外一点,以O 2为圆心作一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于点A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.

思路分析: (1)①根据直径所对的圆周角等于90°即可求解; ②根据勾股定理的逆定理可得∠AOB=90°,再分点P 在优弧上;点P 在

劣弧

上两种情况讨论求解;

(2)根据点P 在⊙O 1上的位置分为四种情况得到∠APB 与∠MAN 、∠ANB 之间的数量关系. 解:(1)①若AB 是⊙O 的直径,则∠APB=90. ②如图,连接AB 、OA 、OB . 在△AOB 中,

∵OA=OB=1.AB=,

∴OA 2+OB 2=AB 2

. ∴∠AOB=90°. 当点P 在优弧上时,∠AP 1B=∠AOB=45°;

当点P 在劣弧上时,∠AP 2B=(360°﹣∠AOB )=135°…6分

(2)根据点P 在⊙O 1上的位置分为以下四种情况.

第一种情况:点P 在⊙O2外,且点A 在点P 与点M 之间,点B 在点P 与点N 之间,如图①

∵∠MAN=∠APB+∠ANB , ∴∠APB=∠MAN ﹣∠ANB ;

第二种情况:点P 在⊙O 2外,且点A 在点P 与点M 之间,点N 在点P 与点B 之间,如图②.

∵∠MAN=∠APB+∠ANP=∠APB+(180°﹣∠ANB ), ∴∠APB=∠MAN+∠ANB ﹣180°;

第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图③.

∵∠APB+∠ANB+∠MAN=180°,

∴∠APB=180°﹣∠MAN﹣∠ANB,

第四种情况:点P在⊙O2内,如图④,

∠APB=∠MAN+∠ANB.

点评:综合考查了圆周角定理,勾股定理的逆定理,点与圆的位置关系,本题难度较大,注意分类思想的运用.

对应训练

3.(2012?陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;

(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.考点四:开放题型中的新概念

例4 (2012?北京)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下概念:

若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;

若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.

例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).

(1)已知点A(-

1

2

,0),B为y轴上的一个动点,

①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;

②直接写出点A与点B的“非常距离”的最小值;

(2)已知C是直线y=

3

4

x+3上的一个动点,

①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;

②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E 的“非常距离”的最小值及相应的点E与点C的坐标.

思路分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的概念可以确定|0-y|=2,据此可以求得y的值;

②设点B的坐标为(0,y).因为|- 1

2

-0|≥|0-y|,所以点A与点B的“非常距离”最

小值为|- 1

2

-0|=

1

2

(2)①设点C的坐标为(x0,3

4

x0+3).根据材料“若|x1-x2|≥|y1-y2|,则点P1与点

P2的“非常距离”为|x1-x2|”知,C、D两点的“非常距离”的最小值为-x0= 3

4

x0+2,据

此可以求得点C的坐标;

②当点E在过原点且与直线y= 3

4

x+3垂直的直线上时,点C与点E的“非常距离”

最小,即E(- 3

5

4

5

).解答思路同上.

解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).

∵|-1

2

-0|=

1

2

≠2,

∴|0-y|=2,

解得,y=2或y=-2;

∴点B的坐标是(0,2)或(0,-2);

②点A与点B的“非常距离”的最小值为1

2

(2)①∵C是直线y=

3

4

x+3上的一个动点,

∴设点C的坐标为(x0,

3

4

x0+3),

∴-x0=

3

4

x0+2,

此时,x0=-

8

7

∴点C与点D的“非常距离”的最小值为:

8

7

此时C(-

8

7

15

7

);

②E(-

3

5

4

5

).

-

3

5

-x0=

3

4

x0+3-

4

5

解得,x0=-

8

5

则点C的坐标为(-

8

5

9

5

),

最小值为1.

点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中

的已知条件.本题中的“非常距离”的概念是正确解题的关键.

对应训练

4.(2012?台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b”,使得下列算式成立:

1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-

76,(-3)⊕5=5⊕(-3)=- 4

15

,… 你规定的新运算a ⊕b= (用a ,b 的一个代数式表示). 考点五:阅读材料题型中的新概念

例5 (2012?常州)平面上有两条直线AB 、CD 相交于点O ,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”: (1)点O 的“距离坐标”为(0,0);

(2)在直线CD 上,且到直线AB 的距离为p (p >0)的点的“距离坐标”为(p ,0);在直线AB 上,且到直线CD 的距离为q (q >0)的点的“距离坐标”为(0,q ); (3)到直线AB 、CD 的距离分别为p ,q (p >0,q >0)的点的“距离坐标”为(p ,q ).

设M 为此平面上的点,其“距离坐标”为(m ,n ),根据上述对点的“距离坐标”的规定,解决下列问题:

(1)画出图形(保留画图痕迹): ①满足m=1,且n=0的点M 的集合; ②满足m=n 的点M 的集合; (2)若点M 在过点O 且与直线CD 垂直的直线l 上,求m 与n 所满足的关系式.(说明:图中OI 长为一个单位长)

思路分析:(1)①以O 为圆心,以2为半径作圆,交CD 于两点,则此两点为所求;②分别作∠BOC 和∠BOD 的角平分线并且反向延长,即可求出答案;

(2)过M 作MN ⊥AB 于N ,根据已知得出OM=n ,MN=m ,求出∠NOM=60°,根据锐角三角函数得出sin60°=MN OM =m

n

,求出即可. 解:(1)①如图所示:

点M 1和M 2为所求;

②如图所示:

直线MN 和直线EF (O 除外)为所求;

(2)如图:

过M 作MN ⊥AB 于N ,

∵M 的“距离坐标”为(m ,n ), ∴OM=n ,MN=m , ∵∠BOD=150°,直线l ⊥CD ,

∴∠MON=150°-90°=60°, 在Rt △MON 中,sin60°=

MN OM =m

n

, 即m 与n 所满足的关系式是:m=

32

n . 点评:本题考查了锐角三角函数值,角平分线性质,含30度角的直角三角形的应用,主要考查学生的动手操作能力和计算能力,注意:角平分线上的点到角两边的距离相等. 对应训练 5.(2012?钦州)在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:

①f (x ,y )=(y ,x ).如f (2,3)=(3,2); ②g (x ,y )=(-x ,-y ),如g (2,3)=(-2,-3). 按照以上变换有:f (g (2,3))=f (-2,-3)=(-3,-2),那么g (f (-6,7))等于( ) A .(7,6) B .(7,-6) C .(-7,6) D .(-7,-6) 四、中考真题演练 一、选择题 1.(2012?六盘水)概念:f (a ,b )=(b ,a ),g (m ,n )=(-m ,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)]等于( ) A .(-6,5) B .(-5,-6) C .(6,-5) D .(-5,6) 2. (2012?湘潭)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入

7,则输出的结果为( )

A .5

B .6

C .7

D .8

点评:本题考查的是实数的运算,根据题意得出输出数的式子是解答此题的关键. 3. (2012?丽水)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是( )

A .2010

B .2012

C .2014

D .2016

二、填空题

4.(2012?常德)规定用符号[m]表示一个实数m 的整数部分,例如:[]=0,[3.14]=3.按此规定[

]的值为 .

5.(2012?随州)概念:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l 、2l 的距离分别为a 、b ,则称有序非实数对(a ,b )是点M 的“距离坐标”,根据上述概念,距离坐标为(2,3)的点的个数是( ) A .2 B .1 C .4 D .3 6.(2012?荆门)新概念:[a ,b]为一次函数y=ax+b (a≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x 的方程

11x +1

m

=1的解为 . 7.(2012?自贡)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB=1,那么曲线CDEF 的长是 .

8. (2012?泉州)在△ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线,简记为P (l x )(x 为自然数).

(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有条;

(2)如图②,∠C=90°,∠B=30°,当BP

BA

= 时,P(l x)截得的三

角形面积为△ABC面积的1

4

三、解答题

9.(2012?铜仁地区)如图,概念:在直角三角形ABC中,锐角α的邻边与对边的

比叫做角α的余切,记作ctanα,即ctanα=

α

α

角的邻边

角的对边

=

AC

BC

,根据上述角的余

切概念,解下列问题:(1)ctan30°= ;

(2)如图,已知tanA=3

4

,其中∠A为锐角,试求ctanA的值.

10.(2012?无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).

(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.

11.(2012?厦门)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x-1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.

(1)判断点C(

75

,

22

)是否是线段AB的“临近点”,并说明理由;

(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.12.(2012?兰州)如图,概念:若双曲线y=

k

x

(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=

k

x

(k>0)的对径.(1)求双曲线y=

1

x

的对径.

(2)若双曲线y=

k

x

(k >0)的对径是102,求k 的值. (3)仿照上述概念,概念双曲线y= k

x

(k <0)的对径.

13.(2012?绍兴)联想三角形外心的概念,我们可引入如下概念. 概念:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图1,若PA=PB ,则点P 为△ABC 的准外心.

应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且PD=

1

2

AB ,求∠APB 的度数.

探究:已知△ABC 为直角三角形,斜边BC=5,AB=3,准外心P 在AC 边上,试探究PA 的长.

14.(2012?嘉兴)将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC 作变换[60°,3]得△AB′C′,则S △AB′C′:S △ABC = ;

直线BC 与直线B′C′所夹的锐角为 度; (2)如图②,△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B 、C 、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n 的值;

(3)如图③,△ABC 中,AB=AC ,∠BAC=36°,BC=l ,对△ABC 作变换[θ,n]得△AB′C′,使点B 、C 、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n 的值.

15.(2012?台州)概念:P 、Q 分别是两条线段a 和b 上任意一点,线段PQ 长度的最小值叫做线段a 与线段b 的距离. 已知O (0,0),A (4,0),B (m ,n ),C (m+4,n )是平面直角坐标系中四点.

(1)根据上述概念,当m=2,n=2时,如图1,线段BC 与线段OA 的距离是 ;当m=5,n=2时,如图2,线段BC 与线段OA 的距离(即线段AB 长)为 ;

(2)如图3,若点B 落在圆心为A ,半径为2的圆上,线段BC 与线段OA 的距离记为d ,求d 关于m 的函数解析式.

(3)当m 的值变化时,动线段BC 与线段OA 的距离始终为2,线段BC 的中点为M ,

①求出点M 随线段BC 运动所围成的封闭图形的周长; ②点D 的坐标为(0,2),m≥0,n≥0,作MN ⊥x 轴,垂足为H ,是否存在m 的值使以A 、M 、H 为顶点的三角形与△AOD 相似?若存在,求出m 的值;若不存在,请说明理由.

专题讲座二:新概念型问题参考答案

三、中考典例剖析

对应训练

1.3 4

解:∵x1=-1

3

∴x2=

1

1

1()

3

--

=

3

4

,x3=

1

3

1()

4

-

=4,x4=

11

143

=

-

∴差倒数为3个循环的数,∵2012=670×3+2,

∴x2012=x2=3

4

故答案为:3

4

2.64

解:∵(x1,y1)?(x2,y2)=x1x2+y1y2,

∴(4,5)?(6,8)=4×6+5×8=64,

故答案为64.

3.解:(1)如图;

根据抛物线的对称性,抛物线的顶点A必在O、B的垂直平分线上,所以OA=AB,即:“抛物线三角形”必为等腰三角形.

故填:等腰.(2)∵抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,

∴该抛物线的顶点(

2

,

24

b b

)满足

2

24

b b

=(b>0).

∴b=2.

(3)存在.

如图,作△OCD与△OAB关于原点O中心对称,则四边形ABCD为平行四边形.

当OA=OB时,平行四边形ABCD是矩形,

又∵AO=AB,

∴△OAB为等边三角形.

作AE⊥OB,垂足为E,

本文来源:https://www.bwwdw.com/article/095l.html

Top