电磁场HFSS实验报告

更新时间:2024-05-29 08:07:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

实验一 T形波导的内场分析

实验目的

1、 熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、 掌握T型波导功分器的设计方法、优化设计方法和工作原理。 实验仪器

1、 装有windows 系统的PC 一台 2、 HFSS15.0 或更高版本软件 3、 截图软件 实验原理

本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。

T形波导

实验步骤

1、新建工程设置:

运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\\ Insert HFSS Design,在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。

选择求解类型为模式驱动(Driven Model):由主菜单选 HFSS\\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型:

创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0.8。Material(材料)保持为Vacuum。

设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。

复制长方体:展开绘图历史树的 Model\\Vacuum\\Tee节点,右键

点击Tee项,选择 Edit\\Duplicate\\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

合并长方体:鼠标右键切换到物体选择状态。选中第1个长方体,按下 Ctrl键的同时选中第2、3个长方体,由主菜单选 3D Modeler\\Boolean\\Unite,则将三个长方体组合在一起,形成了一个T型接头。

创建隔片:绘制长方体:Draw/box命令任意创建一个长方体,确定位置参数:绘图工程树双击CreateBox1在属性对话窗口的 Command 页,在Position项输入-0.45in , offset-0.05in , 0in,调整长方体尺寸;由 T 型接头中减去间隔:在历史树中选择 Tee 项,按下Ctrl 键的同时再选中Septum项。由主菜单选3D Modeler\\Boolean\\Subtract ,在弹出对话窗口中,确定Tee在Blank Parts列,Septum在Tool Parts列(即将间隔从型接头中去掉),点OK完成。

3、分析求解设置:

在工程树中,找到 TeeModel\\Analysis 节点,点右键 ,选择Add Solution Setup ,弹出对话窗。在 General 标签页的Solution 项输入10,默认单位为GHz,在 Adaptive Solutions的 Maximum Number of Passes 项设为3,其它不变,点击确定。

添加扫频设置:在工程树中的Setup1项上点右键,选择Add

Frenquency Sweep,在弹出对话窗中选择General项,其它具体设置默认不变;在Type栏选择Linear Step,定义频率范围为:8~10GHz,阶长0.05GHz,点OK完成。

设计检查:主菜单选HFSS\\Validation Check,则弹出确认检查窗口,对设计进行确认。全部完成且没有错误时,点Close结束。 4、运行仿真分析:

由主菜单选HFSS\\Analyze all,对设计的模型进行三维场分析求解。求解全部完成后,在信息管理区会出现确定信息。 5、查看仿真分析计算结果:

创建一个S参数的矩形曲线图;创建一个电场视图;创建动态演示场覆盖图 内场分析结果 1、

0.75图形化显示S参数计算结果

XY Plot 1TeeModalCurve Infomag(S(Port1,Port1))Setup1 : Sweep1mag(S(Port1,Port2))Setup1 : Sweep1ANSOFT0.63mag(S(Port1,Port3))Setup1 : Sweep10.50Y10.380.250.138.008.258.508.759.00Freq [GHz]9.259.509.7510.00 图形化显示S参数幅度随频率变化的曲线

2、

查看表面电场分布

表面场分布图

3、动态演示场分布图

实验总结:

外加激励求解设置分析的半波偶极子天线的中心频率在3GHz,同时添加2.5 GHz:^3.5 GHz:频段内的扫频设置,扫频类型为快速扫频。 5、设计检查和运行仿真计算

6、HFSS天线问题的数据后处理(截图,并做相应的说明) 具体在实验结果中阐释。 实验结果 1、回波损耗S11

回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。

图中所示是在2.5 GHz ^3.5 GHz频段内的回波损耗,设计的偶极子天线中心频率约为3GHz, S11<-10dBd的相对带宽BW= (3.25-2.775) /3*1000/=15.83% 2、电压驻波比

驻波比,一般指的就是电压驻波比,是指驻波的电压峰值与电压谷值之比。

由图可以看到在3G赫兹附近时,电压驻波比等于1,说明此处接近行波,传输特性比较理想。

3、smith圆图史密斯圆图是一种计算阻抗、反射系数等参量的简便图解方法。采用双线性变换, 将z复平面上。实部r=常数和虚部x=常数两族正交直线变化为正交圆并与:反射系数|G|=常数和虚部X=常数套印而成。

从smith圆图可以看到,在中心频率3G赫兹时的归一化阻抗约为1,说明端口的阻抗特性匹配良好。

4、输入阻抗传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配。

图中所示的输入阻抗分别为实部和虚部,在中心频率3G赫兹时,输入阻抗比较的理想,容易实现匹配。 5、方向图

方向图是方向性函数的图形表示,他可以形象描绘天线辐射特性随着空间方向坐标的变化关系。辐射特性有辐射强度、场强、相位和极化。通常讨论在远场半径为常数的大球面上,天线辐射(或接收)的功率或者场强随位置方向坐标的变化规律,并分别称为功率方向图和场方向图。天线方向图是在远场区确定的,所以又叫远场方向图。

电场方向图:

由图可以看到,电场方向以Z轴为对称轴,在XOY平面上电场最强,且沿四周均匀辐射。但沿着Z轴方向电场强度很弱。 磁场方向图:

磁场方向图在XOY平面上接近一个圆,虽然看上去有些误差。说明磁场在XOY平面上辐射较为均匀。 三维增益方向图:

这张图可以很具体的看出半波偶极子天线沿着Z轴对称辐射的情况。

6、其他参数

利用HFSS软件仿真还可以得到天线在该辐射表面上得最大辐射强度、方向性系数、最

大强度及其所在方向等参数。

图39 扫描变量$l得到的方向图

实验总结

通过本次HFSS 天线仿真实验,使我更加真实、贴切的了解天线的原理和用途。生活中我们可以见到各种奇形怪状的天线,却不知其意义何在。在这次实验过程中,我不停的操作、翻阅资料、上网查阅文献,对天线仿真设计的各个环节有了一个较为清楚的认识,对天线的各种参数也有了具体的理解,这些东西对以后的相关学习和研究打下了基础。

本文来源:https://www.bwwdw.com/article/08u7.html

Top